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Abstract In this paper, we show how to efficiently and
effectively extract a class of “low-rank textures” in a 3D
scene from 2D images despite significant corruptions
and warping. The low-rank textures capture geometri-
cally meaningful structures in an image, which encom-
pass conventional local features such as edges and cor-
ners as well as all kinds of regular, symmetric patterns
ubiquitous in urban environments and man-made ob-
jects. Our approach to finding these low-rank textures
leverages the recent breakthroughs in convex optimiza-
tion that enable robust recovery of a high-dimensional
low-rank matrix despite gross sparse errors. In the case
of planar regions with significant affine or projective
deformation, our method can accurately recover both
the intrinsic low-rank texture and the precise domain
transformation, and hence the 3D geometry and ap-
pearance of the planar regions. Extensive experimental
results demonstrate that this new technique works ef-
fectively for many regular and near-regular patterns or
objects that are approximately low-rank, such as sym-
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metrical patterns, building facades, printed texts, and
human faces.
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1 Introduction

One of the fundamental problems in computer vision is
to identify certain feature points or salient regions in
images. These points and regions are the basic building
blocks for almost all high-level vision applications such
as image matching, 3D reconstruction, object recogni-
tion, and scene understanding. Through the years, a
large number of methods have been proposed in liter-
ature for extracting various types of feature points or
salient regions. The detected points or regions typically
represent parts of the image that have distinctive ge-
ometric or statistical properties such as Canny edges
(Canny, 1986), Harris corners (Harris and Stephens,
1988), and textons (Leung and Malik, 2001).

One of the important applications of detecting fea-
ture points or regions in images is to establish point-
wise correspondences or measure similarity between dif-
ferent images of the same object. This problem is espe-
cially challenging if the images are taken from different
viewpoints under different lighting conditions. Thus, it
is desirable that the detected points/regions are some-
what stable or invariant under transformations incurred
by changes in viewpoint or illumination. In the past two
decades, numerous “invariant” features and descriptors
have been proposed, studied, compared, and combined
in the literature (see (Mikolajczyk and Schmid, 2005;
Winder and Brown, 2007) and references therein). Some
of the earliest work in this genre were based on using
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a Markov model to study dependences between various
wavelet subbands for rotation invariant textures (Co-
hen et al, 1991; Chen and Kundu, 1994; Wu and Wei,
1996; Do and Vetterli, 2002). There has also been a lot
of study in using different kinds of basis functions, such
as Gabor wavelets, to filter the image and compute ro-
tation invariant features from the filtered image (see
(Haley and Manjunath, 1999; Greenspan et al, 1994;
Madiraju and Liu, 1994) and references therein).

A widely used invariant feature descriptor is the
scale invariant feature transform (SIFT) (Lowe, 2004),
which to a large extent is invariant to changes in ro-
tation and scale (i.e., similarity transformations) and
illumination. Nevertheless, if the images are shot from
very different viewpoints, SIFT is not very successful in
establishing reliable correspondences. This problem has
been partially addressed by its affine-invariant version
(Mikolajczyk and Schmid, 2004; Morel and Yu, 2009).
However, even these extensions of SIFT are limited in
practice: Although the deformation of a small distant
patch can be well-approximated by an affine transform,
projective transformations are necessary to describe the
deformation of a large region viewed through a per-
spective camera. There has been relatively limited work
on projection invariant texture representation (Chang
et al, 1987; Kondepudy and Healey, 1994). To the best
of our knowledge, from a practical standpoint, there are
no feature descriptors that are truly invariant (or even
approximately so) under projective transformations or
homographies. In addition, these methods normally do
not deal with other concurrent nuisance factors such as
illumination changes or partial occlusions and corrup-
tions that could severely undermine feature extraction
from real images.

Despite tremendous effort in the past few decades to
search for better and richer classes of invariant features
in images, there seems to be a fundamental dilemma
that none of the existing methods have been able to
resolve: On the one hand, if we consider typical classes
of transformations incurred on the image domain by
changing camera viewpoint and on the image intensity
by changing contrast or illumination, then in a strict
mathematical sense, invariants of the 2D image are ex-
tremely sparse and scarce – essentially only the topology
of the extrema of the image function remains invariant,
known as attributed Reeb tree (ART) (Sundaramoor-
thi et al, 2009). The numerous “invariant” image fea-
tures proposed in the computer vision literature, in-
cluding the ones mentioned above, are at best approx-
imately invariant, and often only to a limited extent.
On the other hand, a typical 3D scene is rich in regu-
lar structures that are full of invariants (with respect
to 3D Euclidean transformations or other well-behaved

deformation groups). For instance, in an urban envi-
ronment, the scene is typically filled with man-made
objects that have parallel edges, right-angled corners,
regular shapes, symmetric structures, and repeated pat-
terns (see Figures 1 and 2). These geometric structures
are rich in properties that are invariant under all types
of subgroups of the 3D Euclidean group. As a result,
their 2D (affine or perspective) images encode very rich
and precise information about the 3D geometry and
structure of the objects in the scene (Ma et al, 2004;
Kosecka and Zhang, 2005; Schindler et al, 2008).

In this paper we propose a technique that aims to
resolve the above dilemma about invariant features. We
contend that instead of trying to seek local invariant
features of the image that are either scarce or imprecise,
we should

aim to directly extract certain invariant struc-
tures in 3D through their 2D images by undo-
ing the (affine or projective) domain transfor-
mations.

That is, we cast our quest for “invariance” directly as
an inverse problem of recovering 3D information from
2D images. However, to solve such challenging inverse
problems, we will need some new powerful computa-
tional tools which we will introduce and develop in this
paper.

Many methods have been developed in the past to
detect and extract all types of regular, symmetric pat-
terns from images under affine or projective transforms
(see (Park et al, 2008) for a recent evaluation). As sym-
metry is not a property that depends on a small neigh-
borhood of a pixel, it can only be detected from a rel-
atively large region of the image. However, almost all
existing methods for detecting symmetric regions and
patterns start by extracting and putting together local
features such as corners and edges (Yang et al, 2005)
or more advanced local features such as SIFT points
(Schindler et al, 2008). As feature detection and edge
extraction themselves are sensitive to local image varia-
tions such as noise, occlusion, and illumination change,
such symmetry detection methods inherently lack ro-
bustness and stability. In addition, as we will see in this
paper, many regular structures and symmetric patterns
do not even have distinctive features. Thus, we need a
more general, effective, and robust way of detecting and
extracting regular structures in images despite signifi-
cant distortion and corruption.

Our goal in this paper is to extract invariant infor-
mation from regions in a 2D image that correspond to
a very rich class of regular patterns on a planar sur-
face in 3D, whose appearance can be modeled (approx-
imately) as a “low-rank” matrix (see Figure 1 for some
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(a) Input (r = 35) (b) Input (r = 15) (c) Input (r = 53) (d) Input (r = 13)

(e) Output (r = 14) (f) Output (r = 8) (g) Output (r = 19) (h) Output (r = 6)

Fig. 1 Low-rank Textures Automatically Rectified by Our Method. From left to right: a butterfly; a face; a tablet of Chinese
characters; and the Leaning Tower of Pisa. Top: red windows denote the original input, green windows denote the deformed texture

returned by our method; Bottom: textures in the green window rectified for display. We notice that the rank of the image matrix,

denoted by r, is much lower for the rectified textures.

examples). In some sense, many conventional features
mentioned above such as edges, corners, symmetric pat-
terns can all be considered as special instances of such
low-rank textures (see Figure 2). Clearly, an image of
such a texture may be deformed by the camera projec-
tion and undergoes certain domain transformation (say
affine or projective). The transformed texture, viewed
as a matrix, in general is no longer low-rank in the im-
age domain. Nevertheless, by utilizing advanced convex
optimization tools from matrix rank minimization, we
will show how to simultaneously recover such a low-rank
texture from its deformed image and the associated de-
formation.

Our method directly uses raw pixel values of the im-
age (window) and there is no need for any pre-extraction
of low-level, local features such as corners, edges, SIFT,
and DoG features. The proposed solution and algorithm
are inherently robust to gross errors caused by corrup-
tion, occlusion, or cluttered background as long as they
affect a small fraction of the image pixels. Furthermore,
our method applies to any image region where there
are sufficient low-rank textures, regardless of the size
of their spatial support. Thus, we are able to rectify
not only small local patches around an edge or a corner
but also large global symmetric regions such as an en-
tire facade of a building. We believe that this is a very
powerful new tool that allows people to accurately ex-
tract rich structural and geometric information about
the 3D scene from its 2D images, that are truly invari-
ant of image domain transformations.

Organization of this paper: The remainder of this pa-
per is organized as follows: Section 2 gives a rigorous
definition of “low-rank textures” as well as formulates
the mathematical problem associated with extracting
such textures. Section 3 gives an efficient and effective
algorithm for solving the problem. We provide exten-
sive experimental results to verify the efficacy of the
proposed algorithm as well as the usefulness of the ex-
tracted low-rank textures in Section 4. In Section 5, we
discuss some potential extensions and variations to the
basic formulation.

2 Transform Invariant Low-rank Textures

2.1 Definition of Low-rank Textures

In this paper, we consider a 2D texture as a func-
tion I0(x, y), defined on R2. We say that I0 is a low-
rank texture if the family of one-dimensional functions
{I0(x, y0) | y0 ∈ R} span a finite low-dimensional linear
subspace i.e.,

r
.= dim

(
span{I0(x, y0) | y0 ∈ R}

)
≤ k (1)

for some small positive integer k. If r is finite, then we
refer to I0 as a rank-r texture. Figure 2 shows some
ideal low-rank textures: a vertical or horizontal edge
(or slope) can be considered as a rank-1 texture; and a
corner can be considered as a rank-2 texture. To a large
extent, the notion of low-rank texture unifies many of
the conventional local features. By this definition, it is
easy to see that images of regular symmetric patterns
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always lead to low-rank textures. Thus, the notion of
low-rank texture encompasses a much broader range of
“features” or regions than corners and edges.

Given a low-rank texture, obviously its rank is in-
variant under any scaling of the function, as well as
scaling or translation in the x and y coordinates. That
is, if

g(x, y) .= cI0(ax+ t1, by + t2)

for some constants a, b, c ∈ R+, t1, t2 ∈ R, then g(x, y)
and I0(x, y) have the same rank according to our def-
inition in (1). For most practical purposes, it suffices
to recover any scaled or translated version of the low-
rank texture I0(x, y), as the remaining ambiguity left
in the scaling can often be easily resolved in practice by
imposing additional constraints on the texture (see Sec-
tion 3.2). Hence, in this paper, unless otherwise stated,
we view two low-rank textures equivalent if they are
scaled and translated versions of each other:

I0(x, y) ∼ cI0(ax+ t1, by + t2),

for all a, b, c ∈ R+, t1, t2 ∈ R. In homogeneous represen-
tation, this equivalence group consists of all elements of
the form:

G
.=


a 0 t1

0 b t2
0 0 1

 ∈ R3×3
∣∣∣ a, b ∈ R+, t1, t2 ∈ R

 . (2)

In practice, we are never given the 2D texture as
a continuous function in R2. Typically, we only have
its values sampled on a finite discrete grid in Z2, of
size m × n say. In this case, the 2D texture I0(x, y)
is represented by an m× n real matrix. For a low-rank
texture, we always assume that the size of the sampling
grid is significantly larger than the intrinsic rank of the
texture i.e.,1

r � min{m,n}.

It is easy to show that as long as the sampling rate
is not one of the aliasing frequencies of the function
I0, the resulting matrix has the same rank as the con-
tinuous function.2 Thus, the 2D texture I0(x, y) when
discretized as a matrix, also denoted by I0 for conve-
nience, has very low rank relative to its dimensions.

Remark 1 (Low-rank Textures vs. Random Textures)
Conventionally, the word “texture” is used to describe
image regions that exhibit certain spatially stationary
stochastic properties (e.g., grass, sand, fabrics). Such
textures can be considered as random samples from a
stationary stochastic process (Levina and Bickel, 2006)

1 Notice that the scale of the window needs to be large enough

to meet this assumption.
2 In other words, the resolution of the image cannot be too low.

and generally has full rank when viewed as a matrix.
The low-rank “textures” defined here are complemen-
tary to such random textures. Here, low-rank textures
correspond to regions in an image that have rather de-
terministic regular or periodic structures.

2.2 Deformed and Corrupted Low-rank Textures

In practice, we typically never see a perfectly low-rank
texture in a real image, largely due to two factors: 1.
the change in viewpoint induces a transformation on
the domain of the texture function; 2. the sampled val-
ues of the texture function are subject to many types
of corruption such as quantization, noise, occlusions,
etc. In order to correctly extract the intrinsic low-rank
textures from such deformed and corrupted image mea-
surements, we must first carefully model those factors
and then seek ways to eliminate them.

Deformed Low-rank Textures. Although many surfaces
or structures in 3D exhibit low-rank textures, their im-
ages do not! Suppose that a low-rank texture I0(x, y)
lies on a planar surface in the scene. The image I(x, y)
that we observe from a certain viewpoint is a trans-
formed version of the original low-rank texture function
I0(x, y):3

I(x, y) = I0 ◦ τ−1(x, y) = I0
(
τ−1(x, y)

)
,

where τ : R2 → R2 belongs to a certain Lie group G.
In this paper, we assume G is either the rotation group
SO(2), or the 2D affine group Aff(2), or the homogra-
phy group GL(3) acting linearly on the image domain.4

In general, the transformed texture I(x, y) as a matrix
is no longer low-rank. For instance, a horizontal edge
has rank one, but when rotated by 45◦, it becomes a
full-rank diagonal edge (see Figure 2(a)).

Corrupted Low-rank Textures. In addition to domain
transformations, the observed image of the texture might
be corrupted by noise and occlusions or contain some
pixels form the surrounding background. We can model
such deviations as:

I = I0 + E

3 By now, one should understand the reason of modeling low-
rank texture as a function defined on a continuous domain R2:
we can talk about domain transformation freely. Any image or
matrix representation of the texture is only a discrete sampling

of this function. This allows us to generate transformed images
of a low-rank texture by interpolating values of adjacent pixels.

4 Nevertheless, in principle, our method works for more general

classes of domain deformations or camera projection models as
long as they can be modeled well by a finite-dimensional para-

metric family.
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(a) Input (r = 11) (b) Input (r = 16) (c) Input (r = 10) (d) Input (r = 24)

(e) Output (r = 1) (f) Output (r = 2) (g) Output (r = 7) (h) Output (r = 14)

Fig. 2 Representative Examples of Low-rank Textures and Our Results. From left to right: an edge; a corner; a symmetric

pattern, and a license plate. Top: deformed textures (high-rank as matrices); Bottom: the recovered low-rank representations.

for some error matrix E. As a result, the image I might
no longer be a low-rank texture. In this paper, we as-
sume that only a small fraction of the image pixels are
corrupted by large errors, and hence, E is a sparse ma-
trix.

Our goal in this paper is to recover the exact low-
rank texture I0 from an image that contains a deformed
and corrupted version of it. More precisely, we aim to
solve the following problem:

Problem 1 (Recovery of Low-rank Texture) Given
a deformed and corrupted image of a low-rank texture:
I = (I0 +E) ◦ τ−1, recover the low-rank texture I0 and
the domain transformation τ ∈ G.

The above formulation naturally leads to the follow-
ing optimization problem:

min
I0,E,τ

rank(I0) + γ‖E‖0 s.t. I ◦ τ = I0 + E, (3)

where ‖E‖0 denotes the number of non-zero entries in
E. That is, we aim to find the texture I0 of the lowest
possible rank and the error E with the fewest possible
nonzero entries that agrees with the observation I up to
a domain transformation τ . Here, γ > 0 is a weighting
parameter that trades off the rank of the texture versus
the sparsity of the error. For convenience, we refer to
the solution I0 found to this problem as a Transform
Invariant Low-rank Texture (TILT).5

Remark 2 (TILT vs. Affine-Invariant Features.) TILT
is fundamentally different from the affine-invariant fea-
tures or regions proposed in the literature (Mikolajczyk

5 By a slight abuse of terminology, we also refer to the proce-

dure of solving the optimization problem as TILT.

and Schmid (2004); Morel and Yu (2009)). Essentially,
those features are extensions to SIFT features in the
sense that their locations are very much detected in the
same way as SIFT. The difference is that around each
feature, an optimal affine transform is found that in
some way “normalizes” the local statistics, say by max-
imizing the isotropy of the brightness pattern (Garding
and Lindeberg (1996)). Here TILT finds the best local
deformation by minimizing the rank of the brightness
pattern in a robust way. It works the same way for any
image region of any size and for both affine and projec-
tive transforms (or even more general transformation
groups that have smooth parameterization). More im-
portantly, as we will see in Section 4, our method is able
to rectify all kinds of regions that are approximately
low-rank (e.g. human faces, printed text) and the re-
sults match very well with human perception. Unlike
SIFT features whose locations are difficult to predict
or interpret by human vision, TILT has a nice WYSI-
WYG property:

“What You See Is What You Get.”

Remark 3 (TILT vs. RASL.) We note that the opti-
mization problem (3) is very similar to the robust image
alignment problem studied in Peng et al (2010a), known
as RASL. This is because both RASL and TILT use
the same mathematical framework (sparse and low-rank
matrix decomposition with domain transformation) in
their problem formulation. Although the formulation
is similar, there are some important conceptual differ-
ences between the two problems. For instance, RASL
treats each image as a vector and does not make use of
any spatial structure within each image, whereas in this
paper, TILT uses matrix rank and sparsity to study spa-
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tial structures within a 2D image. In this sense, RASL
and TILT are highly complementary to each other: they
try to capture temporal and spatial linear correlation
in images, respectively. From an algorithmic point of
view, TILT is simpler than RASL since it deals with
only one image and one domain transformation whereas
RASL deals with multiple images and multiple trans-
formations, one for each image. We will propose many
extensions to TILT to handle a wider range of textures
and symmetries, most of which are not applicable to the
image alignment problem that RASL strives to solve.
Although beyond the scope of this paper, it remains
to be seen in the future if one can combine TILT and
RASL together to develop a richer class of tools for
extracting more information from images.

Remark 4 (TILT vs. Transformed PCA.) One might
argue that the low-rank objective can be directly en-
forced, as in Transformed Component Analysis (TCA)
proposed by Frey and Jojic (1999), which uses an EM
algorithm to compute principal components, subject to
domain transformations drawn from a known group.
The TCA deals with Gaussian noise and essentially
minimizes the 2-norm of the error term E. So the reader
might wonder if such a “transformed principal compo-
nent analysis” approach could apply to our image rec-
tification problem here. Let us ignore gross corruption
or occlusion for the time being. We could attempt to
recover a rank-r texture by solving the following opti-
mization problem:

min
I0,τ

‖I ◦ τ − I0‖2F s.t. rank(I0) ≤ r. (4)

One can solve (4) by minimizing against the low-rank
component I0 and the deformation τ iteratively: with
τ̂ fixed, estimate the rank-r component Î0 via PCA,
and with Î0 fixed, solve the deformation τ̂ in a greedy
fashion to minimize the least-squares objective.6

Figure 3 shows some representative results of using
such a “Transformed PCA” approach. However, even
for simple patterns like the checker-board, it works only
with a correct initial guess of the rank r = 2 beforehand.
If we assume a wrong rank, say r = 1 or 3, solving (4)
would not converge to a correct solution, even with a
small initial deformation. For complex textures like a
building facade shown in Figure 3, whose rank is impos-
sible to guess in advance, we have to try all possibilities.
Moreover, (4) can only handle small Gaussian noise. For
images taken in real world, partial occlusion and other
types of corruption are often present. The naive trans-
formed PCA does not work robustly for such images.

6 In fact, this simple iteration closely emulates the expectation-
maximization (EM) procedure for solving the TCA problem pro-

posed by Frey and Jojic (1999).

(a) r = 1, fail (b) r = 2, succeed (c) r = 3, fail

(g) r = 4, fail (h) r = 5, succeed (i) r = 6, fail

Fig. 3 Transformed PCA: Recovery of low-rank textures via

solving (4). For a checker-board pattern if and only if we give the

correct rank, r = 2, can we get correctly rectified textures. On a
building facade, we try 6 different initial guesses of the rank from

1 to 6 and only rank r = 5 works approximately well.

As we will see in the rest of this paper, the TILT algo-
rithm that we propose next can automatically find the
minimal matrix rank in an efficient manner and han-
dle very large deformations and non-Gaussian errors of
large magnitude.

3 Solution by Iterative Convex Optimization

As proposed in (Peng et al, 2010a), although the rank
function and the `0-norm in the original problem (3) are
extremely difficult to optimize (in general NP-hard),
recent breakthroughs in sparse representation and low-
rank matrix recovery have shown that under fairly broad
conditions, they can be replaced by their convex surro-
gates (Candès et al, 2009; Chandrasekaran et al, 2009):
the matrix nuclear norm7 ‖I0‖∗ for rank(I0) and the
`1-norm8 ‖E‖1 for ‖E‖0, respectively. Thus, we end up

7 The nuclear norm of a matrix is the sum of all its singular
values.

8 The `1-norm of a matrix is the sum of the absolute values of

its entries.
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Algorithm 1 (The TILT Algorithm)
INPUT: Input image I ∈ Rw×h, initial transformation τ ∈ G
(affine or projective), and a weight λ > 0.

WHILE not converged DO

Step 1: Normalization and compute Jacobian:

I ◦ τ ←
I ◦ τ
‖I ◦ τ‖F

; ∇I ←
∂

∂ζ

„
vec(I ◦ ζ)
‖vec(I ◦ ζ)‖F

«˛̨̨
ζ=τ

;

Step 2 (inner loop): Solve the linearized problem:

(I0∗, E∗,∆τ∗) ← arg minI0,E,∆τ ‖I0‖∗ + λ‖E‖1
s.t. I ◦ τ +∇I∆τ = I0 + E;

Step 3: Update the transformation: τ ← τ +∆τ∗;
END WHILE

OUTPUT: Optimal solution I0∗, E∗, τ∗ to problem (5).

with the following optimization problem:

min
I0,E,τ

‖I0‖∗ + λ‖E‖1 s.t. I ◦ τ = I0 + E. (5)

We note that although the objective function in the
above problem is convex, the constraint I◦τ = I0+E is
nonlinear in τ ∈ G, and hence the problem is not con-
vex. A common technique to overcome this difficulty is
to linearize the constraint (Baker and Matthews, 2004;
Peng et al, 2010a) around the current estimate and it-
erate. Thus, the constraint for the linearized version of
our problem becomes

I ◦ τ +∇I∆τ = I0 + E, (6)

where ∇I is the Jacobian: derivatives of the image w.r.t
the transformation parameters.9 The optimization prob-
lem in (5) reduces to

min
I0,E,∆τ

‖I0‖∗+λ‖E‖1 s.t. I◦τ+∇I∆τ = I0+E. (7)

The linearized problem above is a convex program and
is amenable to efficient solution. Since the linearization
is only a local approximation to the original nonlinear
problem, we solve it iteratively in order to converge to
a (local) minimum of the original non-convex problem
(5). The algorithm has been summarized as Algorithm
1.

The iterative linearization scheme outlined above is
a common technique in optimization to solve nonlinear
problems. It can be shown that this kind of iterative lin-
earization converges quadratically to a local minimum
of the original non-linear problem. A complete proof is
out of the scope of this paper. We refer the interested
reader to Peng et al (2010b); Cromme (1978); Jittorn-
trum and Osborne (1980) and the references therein.

9 Strictly speaking, ∇I is a 3D tensor: it gives a vector of

derivatives at each pixel whose length is the number of parameters

in the transformation τ . When we “multiply” ∇I with another
matrix or vector, it contracts in the obvious way which should be

clear from the context.

3.1 Fast Algorithm Based on Augmented Lagrange
Multiplier Methods

The most computationally expensive part of Algorithm
1 is solving the convex program in the inner loop (Step
2) of Algorithm 1. This can be cast as a semidefinite
program and can be solved using conventional algo-
rithms such as interior-point methods. While interior-
point methods have excellent convergence properties,
they do not scale very well with problem size and hence,
unsuitable for real applications involving large images.
Fortunately, there has been a recent flurry of work in de-
veloping fast, scalable algorithms for nuclear norm min-
imization (Cai et al, 2010; Toh and Yun, 2010; Ganesh
et al, 2009; Lin et al, 2009). To solve the linearized prob-
lem in (7), we use the Augmented Lagrange Multiplier
(ALM) method (Bertsekas, 2004; Lin et al, 2009). For
the sake of completeness, in this section we explain how
the ALM method can be adapted to solve our problem,
and also comment on some implementation details for
improving stability and range of convergence.

3.1.1 General Formulation of ALM

We first review the ALM algorithm in a more general
setting, rather than for our specific problem. This will
be useful later when we deal with different variations
of the TILT algorithm that can all be solved under the
same algorithmic framework described here.

Let us consider convex optimization problems of the
form:

min
X

f(X) s.t. A(X) = b, (8)

where f is a convex (not necessarily smooth) function,
A is a linear function, and b is a vector of appropri-
ate dimension. The basic idea of Lagrangian methods
is to convert the above constrained optimization prob-
lem into an unconstrained problem that has the same
optimal solution.

For the above problem (8), we define the augmented
Lagrangian function as follows:

Lµ(X,Y ) = f(X)+ 〈Y, b−A(X)〉+ µ

2
‖b−A(X)‖22, (9)

where Y is a Lagrange multiplier vector of appropriate
dimension, ‖ · ‖2 denotes the Euclidean norm, and µ >
0 denotes the penalty imposed upon infeasible points.
The following result from Bertsekas (2004) establishes
an important relation between the original problem (8)
and its augmented Lagrangian function (9).

Theorem 1 (Optimality of ALM) Suppose that X̂
is the optimal solution to (8). Then, for appropriate
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choice of Y and sufficiently large µ, we have

X̂ = arg min
X
Lµ(X,Y ).

Thus, we could solve an unconstrained convex mini-
mization problem in order to obtain the solution to the
convex program (8). This result, while of theoretical in-
terest, is not directly useful in practice since the choice
of Y and µ is not known a priori.

ALM methods are a class of algorithms that simul-
taneously minimize the augmented Lagrangian function
and compute an appropriate Lagrange multiplier. The
basic ALM iteration proposed in Bertsekas (2004) is
given by

Xk+1 = arg minX Lµk
(X,Yk),

Yk+1 = Yk + µk (b−A(Xk)) ,
µk+1 = ρ · µk,

(10)

where {µk} is a monotonically increasing positive se-
quence (ρ > 1). Thus, we have reduced the original op-
timization problem (8) to a sequence of unconstrained
convex programs.

The above iteration is computationally useful only
if Lµ(X,Y ) is easy to minimize with respect to X. For
the problems encountered in this paper, this turns out
to be the case indeed. This can be attributed to the
following key property of the matrix nuclear norm and
1-norm:

Sµ(Y1 + Y2)=arg minX µ‖X‖1−〈X,Y1〉+ 1
2‖X−Y2‖2F ,

USµ[Σ]V ∗ =arg minX µ‖X‖∗−〈X,W1〉+ 1
2‖X−W2‖2F ,

(11)

where UΣV ∗ is the Singular Value Decomposition (SVD)
of (W1 +W2), and µ is any non-negative real constant.
Here, S[·] represents the soft-thresholding or shrinkage
operator which is defined on scalars as follows:

Sµ[x] = sign(x) · (|x| − µ) , (12)

where µ ≥ 0. The shrinkage operator is extended to
vectors and matrices by applying it elementwise. We
now discuss how this iterative scheme can be applied
to our linearized convex program (7).

3.1.2 Solving TILT by Alternating Direction Method

For the problem given in (7), the augmented Lagrangian
is defined as:

Lµ(I0, E,∆τ, Y ) .= f(I0, E) + 〈Y,R(I0, E,∆τ)〉

+
µ

2

∥∥R(I0, E,∆τ)
∥∥2

F
, (13)

where µ > 0, Y is a Lagrange multiplier matrix, 〈·, ·〉
denotes the matrix inner product, and

f(I0, E) = ‖I0‖∗ + λ‖E‖1,
R(I0, E,∆τ) = I ◦ τ +∇I∆τ − I0 − E.

From the above discussion, the basic ALM iteration
scheme for our problem is given by

(I0
k , Ek, ∆τk) = arg minI0,E,∆τ Lµk

(I0, E,∆τ, Yk−1),
Yk = Yk−1 + µk−1R(I0

k , Ek, ∆τk).

Throughout the rest of the paper, we will always assume
that µk = ρk µ0 for some µ0 > 0 and ρ > 1, unless
otherwise specified.

We now focus on efficiently solving the first step
of the above iterative scheme. In general, it is compu-
tationally expensive to minimize over all the variables
I0, E and ∆τ simultaneously. So, we adopt a common
strategy to solve it approximately by adopting an al-
ternating minimizing strategy i.e., minimizing with re-
spect to I0, E and ∆τ one at a time:

I0
k+1 = arg minI0 Lµk

(I0, Ek, ∆τk, Yk),
Ek+1 = arg minE Lµk

(I0
k+1, E,∆τk, Yk),

∆τk+1 = arg min∆τ Lµk
(I0
k+1, Ek+1, ∆τ, Yk).

(14)

Due to the special structure of our problem, each of
the above optimization problems has a simple closed-
form solution, and hence, can be solved in a single step.
More precisely, the solutions to (14) can be expressed
explicitly using the shrinkage operator as follows:

I0
k+1 ← UkSµ−1

k
[Σk]V Tk ,

Ek+1 ← Sλµ−1
k

[I ◦ τ +∇I∆τk − I0
k+1 + µ−1

k Yk],
∆τk+1 ← (∇I)†(−I ◦ τ + I0

k+1 + Ek+1 − µ−1
k Yk),

(15)

where UkΣkV Tk is the SVD of
(
I ◦ τ +∇I∆τk − Ek +

µ−1
k Yk

)
, and (∇I)† denotes the Moore-Penrose pseudo-

inverse of ∇I.
From experiments, we observe that the above al-

gorithm is much faster than all other alternative con-
vex optimization schemes (such as the interior point
method, accelerated proximal gradient, etc.). Although
the convergence of the ALM method (10) has been well
established in the optimization literature, its approxi-
mation by the above alternating minimization, known
as alternating direction method (ADM) of multipliers, is
not always guaranteed to converge to the optimal solu-
tion. If there are only two alternating terms, its conver-
gence has been well-studied and established (Glowinski
and Marroco, 1975; Gabay and Mercier, 1976; Eckstein
and Bertsekas, 1992). Somewhat surprisingly, however,
very little is proven for the convergence of cases where
there are more than three alternating terms, despite



9

Algorithm 2 (Solving Inner Loop of TILT)
INPUT: The current (deformed and normalized) image I◦τ ∈
Rm×n and its Jacobian ∇I against deformation τ , and λ > 0.

Initialization: k = 0, Y0 = 0, E0 = 0,∆τ0 = 0, µ0 > 0, ρ > 1;
WHILE not converged DO

(Uk, Σk, Vk) = svd
`
I ◦ τ +∇I∆τk − Ek + µ−1

k Yk
´
;

I0k+1 = UkSµ−1
k

[Σk]V Tk ;

Ek+1 = S
λµ−1

k
[I ◦ τ +∇I∆τk − I0k+1 + µ−1

k Yk];

∆τk+1 = (∇I)†(−I ◦ τ + I0k+1 + Ek+1 − µ−1
k Yk);

Yk+1 = Yk + µk(I ◦ τ +∇I∆τk+1 − I0k+1 − Ek+1);

µk+1 = ρµk;

END WHILE
OUTPUT: solution (I0, E, ∆τ) to problem (7).

overwhelming empirical success with such schemes. Re-
cently, Yuan and Tao (2010) obtained a convergence
result for a certain three-term alternation applied to
the noisy principal component pursuit problem (see also
(He, 2009)). However, the scheme proposed and proved
in (Yuan and Tao, 2010) is slightly different from the
direct ADM scheme (14) and is much slower in practice.
The convergence of the ADM scheme (14) remains an
open problem although in practice it gives the simplest
and fastest algorithm.

We summarize the ADM scheme for solving (7) as
Algorithm 2. We choose the sequence {µk} to satisfy
µk+1 = ρµk for some ρ > 1. We note that the opera-
tions in each step of the algorithm are very simple with
the SVD computation being the most computationally
expensive step.10

3.2 Implementation Details

In the previous section, we described how the linearized
and convexified TILT problem (5) can be solved effi-
ciently using the ALM algorithm. However, there are a
few caveats in applying it to real images. In this sec-
tion, we discuss some possible ways to deal with these
issues and make the problem well-defined. We also dis-
cuss some specific implementation details that could
potentially improve the range of convergence of our al-
gorithm.

Constraints on the Transformations. As discussed in
Section 2, there are certain ambiguities in the defini-
tion of low-rank texture. The rank of a low-rank tex-
ture function is invariant with respect to scaling in the
pixel values, scaling in each of the coordinate axes, and
translation along any direction. Thus, in order for the
problem to have a unique, well-defined optimal solution,

10 Empirically, we notice that for larger window sizes (over 100×
100 pixels), it is much faster to run the partial SVD instead of

the full SVD, if the rank is known to be very low.

we need to eliminate these ambiguities. In Step 1 of Al-
gorithm 1, the intensity of the image is renormalized
in each iteration in order to eliminate the ambiguity of
scale in the pixel values. Otherwise, the algorithm may
tend to converge to a “globally optimal” solution by
zooming into a black pixel or dark region of the image.

To deal with the ambiguities in the domain trans-
formation, we could add some additional constraints
to the problem. Let τ(·) represent the transformation.
Suppose that the support of the initial image window Ω

is a rectangle (call the edges e1 and e2) with the length
of the two edges being L(e1) = a and L(e2) = b, so that
the total area S(Ω) = ab.

For affine transformations, to eliminate the ambigu-
ity in translation, we typically enforce that the center
x0 of the initial rectangular region Ω remain fixed be-
fore and after the transformation i.e., τ(x0) = x0. This
imposes a set of linear constraints on ∆τ of the form:

At∆τ = 0. (16)

To eliminate the ambiguities in scaling the coordinates,
we enforce (only for affine transformations) that the
area and the ratio of edge length remain constant be-
fore and after the transformation, i.e. S(τ(Ω)) = S(Ω)
and L(τ(e1))/L(τ(e2)) = L(e1)/L(e2). In general, these
equalities impose additional nonlinear constraints on
the desired transformation τ in problem (5). Similar
to the way we dealt with the non-linearity in the con-
straint in (5), we can linearize these additional con-
straints w.r.t. the transformation parameters τ and ob-
tain another set of linear constraints on ∆τ denoted
by:

As∆τ = 0. (17)

We have given a more detailed explanation and deriva-
tion of these two sets of linear constraints in the ap-
pendix.

For projective transformations, we typically fix two
points,11 the two diagonal corners of the initial rectan-
gular window or of the parallelogram if initialized with
the result of the affine TILT.12 Notice that a homog-
raphy matrix has a total of eight degrees of freedom.
If the low-rank texture is associated with certain sym-
metric pattern that has two sets of parallel lines, the x
and y-axes of the rectified low-rank texture then corre-
spond to the two vanishing points. The two vanishing
points and the two fixed points together impose exactly

11 In fact, one can use the same set of constraints as the affine
case. But from our experience, the algorithm is more stable with

the initialization of two points. In addition, as we will explain,
the parameterization is more geometrically meaningful.
12 In practice, we almost always initialize the projective case

with the result from the affine case.
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eight constraints and uniquely determine the homog-
raphy. Hence, with this parameterization, there is no
ambiguity in the optimal solution.

Thus, to eliminate the scaling and translation am-
biguities in the solution, we simply add a set of linear
constraints to the optimization problem (7). The result-
ing convex program can be solved again using the ALM
algorithm. This would involve making very small mod-
ifications to Algorithm 2 to incorporate the additional
linear constraints.13

Multi-Resolution Approach. While the above formula-
tion works reasonably well in practice, the presence of
arbitrarily shaped sharp features or contours on an oth-
erwise smooth low-rank texture can cause the TILT
algorithm to converge to a local minima that is not
the desired solution. Hence, to cope with large defor-
mations, we adopt a multi-resolution approach. This
is a common technique in many computer vision algo-
rithms wherein we construct a pyramid of images, start-
ing from the input image, by subsequently blurring and
downsampling it. The problem is then solved at the low-
est resolution first. The solution thus obtained is used
to initialize the algorithm at the adjacent level of higher
resolution, and this procedure is repeated for all levels.
In practice, the multi-resolution approach not only im-
proves the range of transformations that our algorithm
can handle, but it also improves the running time of
the algorithm significantly. This is because, the convex
programs can be solved much faster at the lower reso-
lutions, and since the initialization at the higher resolu-
tion is better, the number of iterations to convergence
is typically very small (less than 20).

An important consideration while incorporating the
multi-resolution approach for the TILT algorithm is the
fact that the convex relaxation discussed in Section 3 is
tight only at higher dimensions.14 Although it is very
difficult to analytically estimate the minimum optimal
size of the image, in practice, we find that our method
works well for windows of size larger than 20× 20 pix-
els. In our implementation, we use a Gaussian kernel to
blur the image and consider up to two levels of down-
sampling, each by a factor of 2 w.r.t. its adjacent higher
level of resolution. We also ensure that the size of the
image at the lowest resolution is at least 20× 20 pixels.
We tested the speed of this scheme in Matlab on a 3Ghz
PC. Fixing the initial window to have size 50× 50, the

13 We only have to introduce an additional set of Lagrangian
multipliers and then revise accordingly the update equation as-

sociated with ∆τk+1.
14 The convex relaxation has a failure probability associated

with it which typically decays as O(n−α), for some α > 0, as-

suming that the matrices involved have size n× n.

running time is less than 6 seconds, averaged over 100
trials.

Branch-and-Bound Scheme. We can increase the range
of deformation that our algorithm can handle signifi-
cantly by employing a branch-and-bound scheme. For
instance, in the affine case, we initialize Algorithm 1
with different deformations (e.g., a combination search
for all 4 degrees of freedom for affine transforms with
no translation). Any affine transformation can be pa-
rameterized by [A b] ∈ R2×2 × R2. Since we fix the
center of the window, we effectively set b = 0. The re-
maining 4 parameters of the transformation denote the
scaling along the x and y-axes, rotation, and skew. As
discussed in Section 2, the scaling along the canoni-
cal axes does not change the rank of the texture, and
hence, we ignore the ambiguity in it. Thus, we are left
with two parameters - skew and rotation - that need to
be determined. In other words, we can parameterized
the affine matrix A as:

A(θ, t) =
[
cos θ − sin θ
sin θ cos θ

]
×
[
1 t
0 1

]
.

We partition the parameter space (rotation and skew)
into multiple regions and perform a greedy search on
the regions one-by-one. We first run TILT for various
initializations of the rotation angle. We choose the one
that minimizes the cost function, and use this as an ini-
tialization to search for the skew parameters along the
x-direction first, and subsequently along the y-direction.
The parameters that minimize the cost function is the
output of the branch-and-bound scheme.

A natural concern about such a branch-and-bound
scheme is its effect on speed. Within the multi-resolution
scheme, we only need to perform branch-and-bound at
the level of lowest resolution, find the best solution, and
use it to initialize the higher-resolution levels. Since Al-
gorithm 1 is extremely fast for small matrices at the
lowest-resolution level, running multiple instances with
different initializations does not significantly affect the
overall speed. In a similar spirit, to find the optimal
projective transform (homography), we always find the
optimal affine transform first and then use it to ini-
tialize the algorithm.15 From our experience, we found
that with such initialization, we normally do not have
to use the branch-and-bound scheme for the projective
transformation case.

15 Notice that, for a perspective image of a plane, the affine

model is approximately true if the size of the patch is small com-
pared to the distance. The projective model however applies re-

gardless of the size.
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4 Experimental Results

In this section, we present the results of the proposed
TILT algorithm on various natural and artificial low-
rank textures. We first present some results quantify-
ing the performance range of our algorithm. We then
present examples from many different categories of nat-
ural images where TILT can recover the inherent sym-
metrical texture in the images. Finally, we present some
examples where TILT does not recover the low-rank
texture and examine the reasons for such failures.

4.1 Range of Convergence of TILT

For most low-rank textures, the proposed Algorithm 1
has a fairly large range of convergence, without using
any branch-and-bound. In this section, we give a careful
characterization of the range of convergence (ROC) of
the proposed algorithm on a standard checker-board
pattern.

Affine Case. We deform a checker-board like pattern
by a wide range of affine transforms of the form: y =
Ax + b, x, y ∈ R2, and test if the algorithm converges
back to the correct solution. We parameterize the affine
matrix A as A(θ, t) =

[
cos θ − sin θ
sin θ cos θ

]
× [ 1 t

0 1 ] . We change
(θ, t) within the range θ ∈ [0, π/6] with step size π/60,
and t ∈ [0, 1] with step size 0.05. We repeat the sim-
ulations 10 times in each region and compute the suc-
cess rate. Figure 4(b) shows the rate of success for all
regions. Notice that the algorithm always finds the cor-
rect solution for up to θ = 20◦ of rotation and skew
(or warp) of up to t = 0.4. We note that, due to its
rich symmetries and sharp edges, the checker-board like
pattern is a challenging case for “global” convergence
as at many angles, its image corresponds to a local
minimum that has relatively low rank. In practice, we
find that for most symmetric patterns in urban scenes
(as shown in Figure 8), our algorithm converges for a
much larger range without any branch-and-bound. So
the large ROC ensures that a simple partition of the
parameter space with a branch-and-bound scheme can
make the TILT algorithm work for the entire range of
affine transformations.

Projective Case. For the case of projective transforma-
tions (homographies), even if we fix two points, there
are still four remaining degrees of freedom. It is difficult
to illustrate the range of convergence for all four dimen-
sions together. So here we test the range of convergence
for some of the most representative projective transfor-
mations that we normally encounter in real-world im-

ages: a planar low-rank pattern rotating in front of a
perspective camera.

More specifically, we put a standard checker-board
pattern in front of a standard perspective camera – the
image plane is the xy-plane and the optical axis is the
z-axis. We rotate the pattern along a line through the
origin within the xy-plane. We indicate the location of
the axis of rotation by the angle it makes with the x-
axis. Experimentally, we find the limits of the TILT
algorithm by gradually increasing the amount of rota-
tion along each axis (from 0◦ to 90◦ at a step of 5◦). We
also change the rotation axis from the x-direction (0◦)
to the y-direction (90◦).16 Figure 5 shows the range of
convergence of TILT under this setting. The curves in-
dicate when TILT fails for the first time, or in other
words, TILT succeeds for all cases below the curves.

The two curves in the plot compare two cases: the
first case (green curve) is just the basic projective TILT
without any special initialization nor any branch and
bound; the second case (red curve) is the projective
TILT initialized with the results from the affine TILT.
From these results, we may conclude:

– The basic projective TILT works extremely well for
the slanted checker-board like pattern – it converges
up to 50◦ of rotation in all directions.

– Initialization with the affine TILT normally boosts
the range of convergence for the projective TILT up
to 65◦ or rotation, in some cases increasing by as
much as 20◦.

There are many possible ways to further improve the
range of convergence for the TILT algorithm. So far, we
have always used a square window as the initial window.
As we will see with experiments in later sections, TILT
could work much better if the initial window is chosen
in a way that is more adaptive to the orientation of the
texture as well as the scale of the texture.

4.2 Robustness of TILT

In this experiment, we test the robustness of TILT
on some representative synthetic and realistic low-rank
patterns, shown in Figure 6 (left). We introduce a small
deformation to each texture (say rotation by 10◦) and
examine if TILT converges to the correct solution un-
der different levels of random corruption. We randomly
select a fraction (from 0% to 100%) of the pixels and as-
sign them a random value in the range (0, 255). We run
the TILT algorithm on such corrupted images and ex-
amine how many images are correctly rectified by TILT

16 The setting is symmetric and the pattern is symmetric so we

only have to verify the range of convergence for the first quadrant.
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(a) Representative Input Images in Each Region (b) Convergence Probability Map

Fig. 4 Range of Convergence for Affine Transform without branch-and-bound. Image on the left: initial input images that
correspond to different regions of the range of parameter space in the plot on the right. Plot on the right: x-axis: rotation angle θ;

y-axis: skew parameter t. White region indicates success in all trials while the black region indicates failure in all trials.

Fig. 5 Range of Convergence for Projective Transform. Image on the left: Representative initial input images for which the

TILT algorithm succeeds without any special initialization or branch and bound. Plot on the right: x-axis: the position of the rotation

axis; y-axis: the amount of rotation. Green curve: without initialization with affine TILT. Red curve: initialized with affine TILT.

at each level of corruption. The results are shown in
Figure 6 (right). Notice that for almost three quarters
of the textures TILT can tolerate up to 30% random
corruption and for textures in the first row TILT can
rectify the deformation even if more than 50% of the
pixels are corrupted. Also, we notice that for textures
where TILT has low error tolerance, their textures ei-
ther have very low contrast, or are rather sparse, or
have relatively high rank.

Figure 7 show some more examples for the robust-
ness of the proposed algorithm to random corruption,
occlusions, and cluttered background, respectively. For

the first two experiments, no branch-and-bound is even
needed.

The above experiments demonstrate the robustness
of TILT to randomly located corruptions. However, in
some cases we may have some idea about which part of
the images are likely to be corrupted or occluded. For
instance, if the initial window is too close to the im-
age boundary, the algorithm may converge to a region
outside of the image boundary. In such cases, we know
which pixels in the region are missing. This informa-
tion can help us to modify the algorithm and further
improve its robustness. We will discuss this case in more
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Fig. 6 Robustness Tests of TILT on various low-rank textures. The textures on the left are ordered in descent order of being

robust to random corruption: from left to right, from top to bottom. Plot on the right shows TILT succeeds with how many textures
at each level of corruption.

(i) Input I (j) Output I ◦ τ (k) Low rank I0 (l) Sparse error E

Fig. 7 Robustness of TILT. Top row: random corruption added to 60% pixels; Middle row: scratches added on a symmetric pattern;

Bottom row: containing cluttered background.

detail in Section 5 when we study possible extensions
to TILT.

4.3 Shape from Low-rank Textures

Obviously, the rectified low-rank textures found by our
algorithm can facilitate many vision tasks, including es-
tablishing correspondences among images, recognizing
text and objects, or reconstructing the 3D structure of a

scene, etc. Due to limited space, we only illustrate how
our algorithm can help extract precise, rich geometric
and structural information from an image of an urban
scene, as shown in Figure 8 (top). This complements
many existing “Shape from X” methods in the vision
literature.

The size of the image shown in Figure 8 is 1024×685
pixels and we simply run the TILT algorithm (with
affine transforms) on a grid of 60× 60 windows. If the
rank of the resulting texture drops significantly from
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Fig. 8 Shape from (Low-rank) Textures. Top left: The input grid of 60× 60 windows. Top right: Low-rank textures detected by

the TILT algorithm with affine transform and the recovered local affine geometry. Middle left: Use homography to get the projective

transformations. Middle right: the resulting image with the marked regions augmented with virtual objects. Bottom row: representative
low-rank textures recovered from the marked regions of the buildings.

that of the original window, we say that the algorithm
has “detected” a region with some low-rank structure.17

In Figure 8, we have shown the resulting deformed win-
dows, together with the local orientation and surface
normal recovered from the recovered affine transforma-
tion. Notice that for windows located inside the build-
ing facades, TILT correctly recovers the local geome-
try for almost all of them; even for patches located at
the edge of the facades, one of the sides of the rectified
patches always aligns precisely with the building’s edge.

17 The image rank is computed by thresholding the singular
values at 1/30th of the largest one. Also, we throw away regions
whose largest singular value is too small, which typically corre-
spond to a smooth region like the sky.

Of course, one can initialize the size of the windows
at different sizes or scales. But for larger regions, affine
transforms will not be accurate enough to describe the
deformation caused by a perspective projection. For in-
stance, the entire facade of the middle building in Fig-
ure 8 (middle row) obviously exhibits significant projec-
tive deformation. Nevertheless, if we initialize the pro-
jective TILT algorithm with the output from the affine
TILT algorithm on a small patch on the facade, the al-
gorithm can easily converge to the correct homography
and recover the low-rank textures correctly, as shown
in Figure 8 (middle row).

With both the low-rank texture and their geometry
correctly recovered, we can easily perform many inter-
esting tasks such as editing parts of the images while
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respecting the true 3D shape and the correct perspec-
tive. Figure 8 (middle row) shows some examples, which
suggest that our method can be very useful for many
augmented-reality related applications.

4.4 Rectifying Many Categories of Low-rank Textures

In this section, we test the efficacy of the TILT al-
gorithm on natural images belonging to various cate-
gories. Besides some examples where TILT works very
well, we also present some cases that are particularly
challenging where our algorithm succeeds only to some
extent, and some examples where it fails. We believe
that from these examples, the readers may gain a better
understanding about both the strength and limitations
of the TILT algorithm.

Since the proposed TILT algorithm has a decent
range of convergence for both affine and projective de-
formations and it is also very robust to sparse corrup-
tion of the image intensity, we find that it works re-
markably well for a very broad range of patterns, reg-
ular structures, natural objects and even printed text
with an approximate low-rank structure. Figure 9 shows
many such examples, from which we see that even when
initialized with a very rough rectangular window, our
algorithm can converge precisely to the underlying low-
rank structure of the images, despite occlusion, noisy
background, illumination change, and significant defor-
mation.

Issues with more challenging cases. One should expect
our algorithm to work well only when the low-rank and
sparse structure assumptions, explained in Section 2,
hold true. The current algorithm is only a basic version
and its capability is still limited, especially when we try
to apply it to cases where the assumptions are not fully
met. Through the remainder of this section and the next
section, we will discuss some of the limitations of TILT,
as well as potential extensions that make it work better
in some of the more challenging cases. Figure 10 shows
some examples on which TILT does not perform as well
as it did in previous examples. These examples are ar-
guably more challenging than those shown in Figure
9:

– Figure 10(a) is an example when the size of the in-
put window is too large. Ideally, the correct solu-
tion is supposed to converge to a region beyond the
image boundary. It stops once it hits the bound-
ary which is a only partially correct solution. In the
next section, we will show how this problem can be
addressed by combining the basic TILT algorithm
with techniques from low-rank matrix completion.

– Figure 10(b) shows a case where the algorithm man-
ages to converge to an approximate solution despite
the fact that there is a lack of regularity in the
printed text. TILT managed to correct the perspec-
tive distortion partially in this case.

– Figure 10(c) shows a case where the algorithm man-
ages to correct the overall pose of the object despite
fact that the object is not planar, similar to some of
the cases shown earlier in Figure 1.

– Figure 10(g) shows a failed case, where the per-
spective deformation is too large for the given in-
put window and the texture is complex (the rank
is relatively high). Nevertheless, with slightly bet-
ter initialization,18 we expect the TILT algorithm
to converge to the correct solution. For example, as
shown in Figure 11 (top), if we simply shorten the
width of the initial window along the main tilted
direction, the algorithm manages to find the correct
solution.

– Figure 10(h) shows another failed case, where the
initial window contains too much of the background,
which has the appearance of a random texture with
little structure, the algorithm converges to a local
minimum. Nevertheless, with a slightly different ini-
tial window that contains less background, the algo-
rithm converges to the correct solution (see Figure
11 (bottom)).

– Figure 10(i) shows a case where the low-rank tex-
ture itself is close to a sparse binary image. The
algorithm only manages to converge to a partially
correct transform – the recovered texture is approx-
imately symmetric along the horizontal direction. In
this case, in order to improve the results, we may
have to adjust the weights between the low-rank and
sparse components in the cost function in (7), or to
enforce the symmetry of the desired solution explic-
itly in the form of additional constraints.

Expected failures. It should come as no surprise that
when the assumptions of TILT are violated, it no longer
finds the low-rank structure correctly. Figure 12 shows
the results of TILT on some examples:

– The first example (Figure 12(a)) shows the limita-
tions of the “low-rank” assumption on some man-
made structures: Two incompatible dominant low-
rank structures (the facade and the shadow) are
overlapped, which result in an overall high-rank re-
gion. TILT actually aligns to the orientation of the
strong shadow. In order to make this case work, a
simple “low-rank” promoting objective, like the one
in TILT, is no longer sufficient.

18 say by aggregating TILT results from smaller affine patches

or using rough manual inputs
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Fig. 9 Representative Results of TILT. The objects can be categorized as follows. Top two rows: regular patterns and textures;
Middle two rows: signs, characters, and printed text; Bottom two rows: bar code, objects with bilateral symmetry. In each case, the

red window denotes the input and the green window denotes the final output. The image enclosed by the green window is rectified

and displayed to emphasize the low-rank structure.

– The second example (Figure 12(b)) shows another
limitation of the low-rank assumption. If the cho-
sen window contains two adjacent low-rank regions
each of which is distorted differently, the combined
region might no longer be low-rank when subject
to one global affine or projective transformation.

Proper segmentation of the different low-rank re-
gions is needed before TILT can work correctly on
each of the low-rank regions; or TILT has to be ex-
tended to simultaneously handle multiple domain
transformations.
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(a) boundary effect (b) lack of regularity (c) non-planar

(g) large defomration (h) too much background (i) sparse regular structures

Fig. 10 Challenging Cases. TILT converges to an approximately correct solution at best for these examples. Top: from left to

right: boundary problem, not enough regular texture, non-planar objects. Bottom: from left to right: large perspective distortion; too
much random texture in background; sparse (binary image) low-rank structure.

– Although TILT is designed to be robust to cor-
ruptions or occlusions, it is effective only when the
amount of corruption is not too large. As shown in
Figure 12(c), if there is too much occlusion, TILT
cannot be expected to succeed, even though hu-
man vision is still capable of perceiving the build-
ing structures behind the tree. It remains to be seen
whether the robustness of TILT can be improved to
handle such challenging cases.

– As mentioned earlier in Section 2, TILT is not de-
signed to work on random textures, such as the one
shown in Figure 12(d). Although there has been
work in the literature showing that it is possible
to infer approximate orientation of the flower bed
based on statistical property of the random texture,

TILT is certainly not designed to handle such cases
– it is effective only for regular symmetric textures,
but not for random textures.

5 Potential Modifications and Extensions

The TILT algorithm proposed in this paper is still rather
rudimentary. Nevertheless, due to its simplicity, it can
be easily modified or extended to handle more complex
scenarios in natural images. In this section, we demon-
strate this with three possible extensions. The reader
should be aware that we do not claim that we have
already given the best solution to each problem dis-
cussed here. Instead, the goal is merely to show the
readers some basic ideas about how to modify TILT. In
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(a) high-rank structures (b) two low-rank regions (c) too much occlusion (d) random textures

Fig. 12 Failure Cases. TILT fails to recover the geometry of these images since they deviate from the assumptions under which TILT

is designed to work. From left to right: two incompatible dominant low-rank structures, overlapped or adjacent; too much occlusion;

random textures.

Fig. 11 Effect of Initialization. For the examples in Figure

10(g) and (h) where TILT had failed earlier, the correct solution
is found with a slightly different initialization, in both cases by

reducing the horizontal width of the initial (red) window.

fact, we believe, each of the problem deserves a much
more thorough investigation so that more effective and
efficient algorithms could be developed in the future.

5.1 Matrix Completion for Boundary Effects

We note that in Step 3 of Algorithm 1, we update the
transformation parameters τ , and recompute the trans-
formed image I ◦ τ in Step 1 of the subsequent itera-
tion. While this is conceptually sound, it poses a serious
problem in practice. This is because real images always
have finite support or size. So, if the window containing

the texture of interest is close to the image boundary,
then the transformed image window I ◦ τ might not be
well-defined at all pixels. The conventional methods to
treat this problem is to either assume that the region
outside the image has zero pixel values, or to interpo-
late them from the boundary pixels ensuring some de-
gree of smoothness. The former approach is ill-suited to
our problem since it may destroy the low-rank structure
of the texture inside the image (hence TILT may fail
to converge to the correct solution as shown in Figure
10(a)), while the latter introduces more free parameters
to the algorithm, namely the choice of the interpolation
function.

This problem can actually be handled in a more
principled manner. We treat the pixels that fall outside
the image boundary as missing entries of the low-rank
matrix to be recovered. This formulation is in a similar
spirit as the low-rank matrix completion problem that
has been extensively studied recently (Recht et al, 2008;
Candès and Recht, 2008; Candès and Tao, 2010). Let
Ω represent the set of pixels that are located inside the
image boundary after transformation. Then, we modify
the constraint in the linearized problem (7) as follows:

πΩ(I ◦ τ +∇I∆τ) = πΩ(I0 + E), (18)

where πΩ(·) denotes the projection operator onto the
set of entries with support in Ω. Thus, we apply the
constraint only on the set of pixels at which the trans-
formed image I◦τ is well-defined. Since πΩ(·) is a linear
operator, the resulting optimization problem is still a
convex program and can be solved by the ALM algo-
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Fig. 13 TILT with or without Matrix Completion. Left: Basic TILT without matrix completion – TILT stops when the region
goes over the image boundaries before it converges to the correct transform; Right: TILT with matrix completion – with the same

initialization it converges to the correct transform.

rithm outlined in Section 3.1.19 Figure 13 shows two
examples of how matrix completion could improve the
performance of TILT when the chosen window is too
close to boundaries of the image and the correct solu-
tion needs to converge to outside of the original image.

5.2 Enforcing Reflective Symmetry

Notice that “low-rank” is merely the result of many
types of regularities and symmetries. However, a low-
rank texture need not necessarily be symmetric. Hence,
if we intend to recover a symmetric texture, it might
not be sufficient to impose only the “low-rank” objec-
tive. For instance, although many of the examples seen
earlier have reflective symmetry, the axis of symmetry
is not necessarily always at the center of the recov-
ered low-rank region. So in order to ensure that the re-
covered low-rank region has such symmetry, additional
constraints need to be imposed on TILT.

Suppose that I0 ∈ Rm×n represents the image of a
texture with reflective symmetry. Without any loss of
generality, we may assume that the axis of symmetry is
horizontal. Then, the reflective symmetry of I0 can be
expressed mathematically as

I0(i, j) = I0(m+ 1− i, j), ∀(i, j) ∈ {1 : m} × {1 : n}.
(19)

In general, for any type of symmetry for I0, we can find
an invertible linear mapping g : R2 → R2 such that

19 One can even handle small noise in this case, as shown in the

work of Yuan and Tao (2010).

g(I0) = I0.20 Thus, we may add any desired symme-
try as an additional set of constraints to the linearized
convex program (7) in the TILT framework. Since the
constraints from symmetry are all linear in I0, we can
easily use the ALM algorithm described in Section 3.1,
with minor modifications, to solve the new constrained
optimization problem.

We have implemented a modified version of TILT
which enforces the recovered low-rank component I0 to
have reflective symmetry in both x and y-directions.21

Figure 14 (top) shows the result of the modified algo-
rithm on a checker-board with reflective symmetry in
the x and y-directions enforced: Notice that the con-
verged region is indeed symmetric in both directions.
Figure 14 bottom shows the new converged results of
the same stop sign example in Figure 10 with the same
initialization. Notice that this is in fact a very challeng-
ing case for TILT as the foreground (the sign) is very
sparse in the image domain. The recovered low-rank
part A is indeed very symmetric and the sparse part E
accounts for all sparse deviations from the symmetry
(including asymmetry in the letters).

5.3 TILT for Rotational Symmetry

Many other structural properties may be converted to
a low-rank objective. For instance, the image of a ro-
tationally symmetric pattern need not be a low-rank
20 For reflective symmetry, g is its own inverse.
21 In order to allow the low-rank region to move freely to a sym-

metric region, we have to remove the constraints on the transla-

tion.
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Fig. 14 Reflective Symmetry Imposed. Top row: results on a checker-board. From left to right: the original image I; the rectified

image I ◦ τ ; the recovered low-rank component I0; and the sparse component E. Bottom row: The corresponding results of the stop

sign example (in Figure 10) with reflective symmetry enforced.

matrix, but it can be converted to one. To deal with ro-
tational symmetry, we will consider circular windows,
instead of rectangular ones. Each circular window is
uniquely determined by its center and its radius. Clearly,
the image region enclosed by such a window is not a
matrix. However, it can be converted to one by consid-
ering a Frieze-expansion pattern (FEP) of the region
(Liu et al, 2004; Lee and Liu, 2010).

Suppose that a matrix I0 ∈ Rm×n is the FEP of a
circular window in an image with center at the origin
and radius R. Then, the mapping τ between an entry
(x0, y0) in I0 and its corresponding pixel in the image
is given by

τ (x0, y0) =
(
Rx0

m
cos
(2πy0

n

)
,
Rx0

m
sin
(2πy0

n

))
.

(20)

If the center and radius of the circular window are cho-
sen correctly, then the above FEP mapping gives rise to
a low-rank matrix. However, in practice, the exact po-
sition of the window is not known a priori. In addition,
there could be an additional deformation of the pattern
due to the viewpoint. Figure 15(a) shows a representa-
tive input image. Suppose we model the deformation
by an affine transformation. Then, the mapping (20)
from the low-rank matrix to the input image can be
rewritten as

τ (x0, y0) = H·
[
Rx0

m
cos
(2πy0

n

)
,
Rx0

m
sin
(2πy0

n

)
, 1
]T

,

(21)

where H represents an affine transformation in homoge-
nous coordinates. We can easily modify TILT to deal
with the combined deformation of the FEP and the
affine map and the algorithm can simultaneously re-
cover the correct center of symmetry and the affine de-
formation. We show the results of such an algorithm on
one rotationally symmetric pattern in Figure 15.

6 Conclusions and Future Directions

In this paper, we introduce a novel framework in which
an image window is viewed as a matrix and the rank of
the matrix is used as a measure of textural simplicity
in the image window. We have introduced a very effec-
tive way of extracting precise structure and geometry of
low-rank textures from their images using iterative con-
vex optimization techniques. The proposed algorithm
works effectively and robustly for a wide range of regu-
lar, symmetric patterns and structures in real images,
suggesting that the transformed low-rank plus sparse
structures model is important for modeling real images
of urban environments and man-made objects. More
importantly, the proposed tools are highly complemen-
tary to most existing vision techniques that mainly fo-
cus on using local features. Instead, by leveraging ef-
ficient high-dimensional optimization techniques, the
new tools can process a large image region to extract
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(a) Input image and initial circle (b) Frieze-expansion patterns

Fig. 15 Rotational Symmetry with Affine Transform. (a) Input image with inherent rotational symmetry. The symmetry is

not immediately evident due to the deformation caused by the viewpoint. The red window denotes the input and the green window
encloses the symmetric pattern converged to by our algorithm. (b) From left to right: the FEP of the input I (red) window which

does not exhibit any low-rank structure; the FEP of the output I ◦ τ (green) window recovered by TILT; the corresponding low-rank

texture I0; and the sparse error E in the recovered FEP.

dominant structural and geometric information more
accurately and robustly in a holistic fashion.

The proposed TILT scheme is still quite rudimen-
tary in its formulation and solution. Many aspects of
it can still be improved. Also, it can be customized
or extended by incorporating additional structural con-
straints or by considering different deformation models.
Conceptually, there should be little difficulty in gener-
alizing TILT from the linear (affine or projective) trans-
forms to other classes of possibly nonlinear domain de-
formations. An important open problem is to derive
conditions (on the type of signals and the deformation
groups) under which this framework is guaranteed to
succeed. As being low-rank is only a necessary but not
sufficient property for many regular, symmetric pat-
terns and structures, it is worth investigating in the
future more pertinent measures or objective functions
for recovering such patterns and structures despite ge-
ometric deformation. More generally, this work could
motivate people to discover new types of (transform-
invariant) properties that can be extracted effectively
and efficiently from images in a similar holistic fashion,
without relying on local features.

The low-rank textures and the associated geometric
transformations recovered by TILT can be very use-
ful for many high-level computer vision tasks such as
image compression, matching, segmentation, symmetry
detection, reconstruction of 3D models of urban envi-
ronments, and recognition of man-made objects. On the
other side of the coin, in this paper we have not fully ad-
dressed the issue of detecting the location and scale of
candidate low-rank regions so as to better initialize and
apply the TILT algorithm. As some of our experiments
have suggested, better initialization can significantly
improve the performance and applicability of TILT to a

broader range of situations. This leaves plenty of room
for future investigation on how to improve and aug-
ment TILT with other computer vision techniques such
as image segmentation and salient region detection, or
with other scale-invariant local features such as SIFT.
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Appendix A: Derivation of Linear Constraints

In Section 3.2, we have proposed to impose two sets of
constraints on the deformation parameters to make the
solution well-defined so as to avoid some pathological
solutions. Here, we show a detailed derivation or lin-
earization of these constraints. In particular, we present
here the derivation for the case when the transformation
group is the set of affine transformations. The deriva-
tion for the homography case is very similar in case such
constraints need to be imposed.

Constraints on Translation (16). Our first constraint is
that the center of the rectangular window is fixed i.e.,
if x0 = [x0(1) x0(2)]T is the initial center of the window
and τ is the optimal transformation, then τ(x0) = x0.
Since the transformation is affine, we have that τ(x) =
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Ax + b, where A =
[
A11 A12

A21 A22

]
is an invertible matrix

and b ∈ R2. Suppose we parameterize our transforma-
tion vector as

τ =


A11

A21

A12

A22

b

 ,
then in (16) we have

At =
[
x0(1) 0 x0(2) 0 0 0

0 x0(1) 0 x0(2) 0 0

]
. (22)

Constraints on Scale (17). The second constraint en-
sures that the area covered by the window as well as
its aspect ratio does not change drastically. We show
how this constraint results in a linear constraint in ∆τ .
For a given affine transformation, we note that the size
of a rectangle gets scaled by the same amount. Thus,
without any loss of generality, we assume that the initial
window is a unit square with the points (0, 0) and (1, 1)
forming opposite diagonal vertices. Once again, we rep-
resent the affine transformation by τ(x) = Ax+ b. Let
S(A, b) denote the area of the window after transfor-
mation. Since the area of the window is unchanged by
translation, we denote the area as S(A). Let e1 and
e2 denote two adjacent edges (with the origin as the
common vertex) of the initial square. After transfor-
mation, these edges can be represented by the vectors
e1 = (A11, A21) and e2 = (A12, A22). Then, the area of
the transformed window is given by

S(A) =
1
2
‖e1‖ ‖e2‖ sin θ, (23)

where cos θ = 〈e1,e2〉
‖e1‖ ‖e2‖ . The above equation can be sim-

plified to

S(A) =
√

(A11A22 −A12A21)2. (24)

Now suppose that the matrix A is perturbed by a small
amount ∆A. Since we require that the new area S(A+
∆A) is close to S(A), we impose the constraint that
the first-order term in the Taylor series expansion of
S(A+∆A) be zero i.e.,

∇A S(A) ·∆A = 0. (25)

We now consider the second part of the constraint
which is to minimize the rate at which the aspect ra-
tio of the window changes. SInce the aspect ratio is
unity for the initial window, we essentially require that
‖e1‖ = ‖e2‖ for the transformed window, using the
same notation as above. We define C(A) = ‖e1‖2 −

‖e2‖2. Then, ideally, we require C(A+∆A) to be close
to zero. Once again, we impose the constraint that the
first-order term in the Taylor series expansion to be zero
i.e.,

∇A C(A) ·∆A = 0. (26)

Combining (25) and (26), and denoting τ as a vector
of all the transformation parameters, it is easy to see
that we get a linear constraint of the form As∆τ = 0,
as given in (17).
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