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Abstract

This paper examines the problem of robust subspace discovery from input data sam-

ples (instances) in the presence of overwhelming outliers and corruptions. A typical

example is the case where we are given a set of images; each image contains e.g. a



face at an unknown location of an unknown size; our goal is to identify/detect the face

in the image and simultaneously learn its model. This paper explores a direction by

employing a simple generative subspace model and proposes a new formulation to si-

multaneously infer the label information and learn the model via low-rank optimization.

Solving this problem enables us to simultaneously identify the ownership of instances

to the subspace and learn the corresponding subspace model. We give an efficient and

effective algorithm based on the Alternating Direction Method of Multipliers (ADMM)

method and provide extensive simulations and experiments to verify the effectiveness

of our method. The proposed scheme can also be applied to tackle many related high-

dimensional combinatorial selection problems.

1 Introduction

Subspace learning algorithms have recently been adopted for analyzing high-dimensional

data in various problems (Jenatton et al., 2010; Wright et al., 2009; Wagner et al., 2009).

Assuming the data are well aligned and lie in a low-dimensional linear subspace, these

methods can deal with large sparse errors and learn the low-rank subspace of data.

Other approaches such as (Elhamifar & Vidal, 2009; Liu et al., 2010; Luo et al., 2011;

Favaro et al., 2011) have been proposed to cluster data into different subspaces. How-

ever, these methods may have difficulty in dealing with a class of unsupervised learning

scenarios in which a large amount of outliers exist. In this paper, we propose a method

to discover low-dimensional linear subspace from a set of data containing both inliers

and a significant amount of outliers. Fig. 1 gives a typical problem setting of this paper,
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Figure 1: Pipeline of the object discovery task for subspace learning. Given a set of

images, we first detect salient image patches (windows). All the image patches from

the same image, considered as instances, form a bag. We assume the common object to

appear as one instance in each bag. Our algorithm then detects and learns the subspace

model for the common object while computing its residue. The symbols X,Z,A and E

on the top of the figure correspond to the notations in our formulation given in Sec. 2.

as well as the pipeline of our proposed solution. Here, we are given a set of images and

each image contains a common object (pattern). Our goal is to automatically identify

the object and learn its subspace model.

In an abstract sense, we are given a set of data containing both inliers lying in a

relative low-dimensional linear subspace and overwhelming outliers; in addition, the

inliers may be corrupted by sparse errors. We make use of two constraints which have

been adopted in the multiple instance learning (MIL) literature that (1) data is divided

into different bags, and (2) at least one inlier exists in each bag; these two constrains
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usually co-exist, e.g., as it is shown in Fig. 1(a) and (b). We may turn each image into

a bag, consider image patches containing objects of the same category as inliers, and

treat image patches from background or other categories as outliers. We aim to find the

low-dimensional subspace and identify which data belongs to the subspace. Obviously,

this problem is highly combinatorial and high-dimensional. Here we borrow the MIL

concept, but assume no given negative bags in the training process, as in (Zhu et al.,

2012); the original problem becomes a weakly-supervised subspace (pattern) discov-

ery problem. We then transfer this problem into a convex optimization formulation,

which can be effectively solved by the Alternating Direction Method of Multipliers

(ADMM) (Gabay & Mercier, 1976; Boyd et al., 2011) method. In the proposed for-

mulation, each instance is associated with an indicator indicating whether the instance

is an inlier or an outlier; this is illustrated in Fig. 1(b); the indicators of instances are

treated as latent variables; our objective function is to minimize both the rank of the

subspace spanned by the selected instance and the ℓ1 norm of the error in the selected

instance; thus, by solving this optimization problem, we achieve the goal of discovering

the low-dimensional subspace and identifying the instances belonging to the subspace.

In Fig. 1(c), we show the discovered face subspace and errors of each face image. We

deal with various object discovery tasks to demonstrate the advantage of our algorithm

in the experiments. In the remainder of this section, we give the related work of our

method.

Relations to Existing Work. In a nutshell, we are addressing a subspace learning

problem, but a very challenging one. The existing scalable robust subspace learning
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methods such as Robust Principal Component Analysis (RPCA) (Candes et al., 2011;

Xu et al., 2012) can handle a sparse number of errors or outliers, while the dense error

correction method in (Wright & Ma, 2010) can deal with dense corruptions under some

restricted conditions. These do not, however, apply to our case since here the inlying

instances are very few compared to the outliers and the inliers might even be partially

corrupted. Nevertheless, our problem assumes an important additional structure: we

know that there is at least one inlier in each set of samples. We will demonstrate that

this extra information assists us in solving a seemingly impossible subspace discovery

problem.

Robust Principal Component Analysis (RPCA) (Candes et al., 2011) has been suc-

cessfully applied in background modeling (Candes et al., 2011), texture analysis (Z. Zhang

et al., 2012) and face recognition (Jia et al., 2012). RPCA requires input data to be

well-aligned, a prohibitive requirement in many real-world situations. To overcome

this limitation, Robust Alignment by Sparse and Low-rank (RASL) (Peng et al., 2012)

was proposed to automatically refine the alignment of input data, e.g. a set of images

with a common pattern. However, RASL demands a good initialization of the common

pattern on the same scale whereas here we are dealing with a much less constrained

problem in which the common pattern (object) observes large scale differences at un-

known locations in the images.

Robustly learning a model from noisy input data is a central problem in machine

learning. In the multiple instance learning (MIL) literature (T. Dietterich et al., 1997),

the input data is given in the form of bags; each positive bag contains at least one pos-

itive instance and each negative bag consists of all negative instances. MIL falls into
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the class of weakly-supervised learning problems. In the MIL setting, the two central

sub-tasks are to: (1) infer the missing label information, and (2) learn the correct model

for the instances. The EM algorithm (Dempster et al., 1977) has been widely adopted

for inferring missing labels for such MIL problems (Q. Zhang & Goldman, 2001a), and

likewise for the latent SVM (Yu & Joachims, 2009). One could modify these methods;

however, as we will see in our comparison, they lead to greedy iterative optimization

that often produces suboptimal solutions. Recently, Lerman et al. (2012) proposed a

convex optimization method called “REAPER” to learn subspace structure in datasets

with large fractions of outliers. Compared to an approach like RPCA, this multiplica-

tive approach has better thresholds for recovery in Gaussian outlier clouds. However,

it is not robust to additional sparse corruption in the instances. The bMCL algorithm

(Zhu et al., 2012) deals with cases of both one-class and multi-class object assumptions

in object discovery with weak supervision. In a previous work, Sankaranarayanan &

Davis (2012) has proposed one-class multiple instance learning (MIL) along the vein

of discriminative models for target tracking. In (X. Wang et al., 2012), an EM approach

of learning a low-rank subspace was proposed also for MIL with the one-class assump-

tion. In this paper, we emphasize the task of robust subspace discovery with an explicit

generative model for global optimization.

For the rest of the paper, we refer to the common pattern as an “object” and focus

on the problem of object discovery. Given a set of images, our goal is to automatically

discover the common object across all the images, which might appear at an unknown

location with an unknown size.

Along the line of object discovery, many methods have also been proposed. In

6



(Russell et al., 2006), each image is treated as a bag of visual words, in which the com-

mon topics are discovered by the Latent Dirichlet Allocation. Other systems such as

(Grauman & Darrell, 2006; Lee & Grauman, 2009) perform clustering on the affinity or

correspondence matrix established via different approaches using different cues in the

images. Although these existing methods achieve promising results on several bench-

mark datasets, they have notable limitations from several perspectives: 1) there often

lacks a clear generative formulation and performance guarantee; 2) some systems are

quite complicated with many cues, classifiers, and components involved; 3) they have a

strong dependency on the discriminative models.

In contrast, this paper explores a different direction by employing a simple genera-

tive subspace model and proposes a new formulation to simultaneously infer the label

information and learn the model via low-rank optimization; unlike EM-like approaches,

our method is not sensitive to the initial conditions and is robust to severe corruptions.

Although different from the classical robust PCA methods, our method inherits the

same kind of robustness and efficiency from its convex formation and solution. Exten-

sive simulations and experiments demonstrate the advantages of our method.

2 Formulation of Subspace Discovery

Given K bags of candidate object instances, we denote the number of instances in the

kth bag as nk. The total number of instances is N = n1 + · · · + nK . Each instance is

represented by a d-dimensional vector x(k)
i ∈ Rd. We may represent all the instances

from one bag as columns of a matrix X(k) =
[
x
(k)
1 , . . . , x

(k)
nk

]
∈ Rd×nk . Furthermore,
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we define X =
[
X(1), . . . , X(K)

]
∈ Rd×N . By default, we assume that each bag

contains at least one common object, and the rest are unrelated. To be concrete, we

associate each object x(k)
i with a binary label z(k)i ∈ {0, 1}. zki = 1 indicates that xk

i is

the common object. Similarly, we define Z(k) =
[
z
(k)
1 , . . . , z

(k)
nk

]
∈ {0, 1}nk and Z =[

Z(1), . . . , Z(K)
]
. We assume that each bag contains at least one common object. So

we have
∨nk

i=1 z
(k)
i = 1, ∀k ∈ [K], where

∨
is an or operator and [K] = {1, 2, . . . , K}

is the set of positive integers less than or equal to K.

In general, different instances of the same object are highly correlated. It is reason-

able to assume that such instances lie on a low-dimensional subspace Ω ⊂ Rd. This

assumption can be verified empirically for real data. Fig. 4 (c) shows a comparison of

the spectrum of a number of instances that are from the same object or from random im-

age patches. Even if one applies a robust dimensionality reduction to the set of random

image patches, their spectrum is still much higher than those for a common object.

However, due to many practical nuisance factors in real images, such as variation of

pose, cast shadow, and occlusion, the observed instances of the common objects may

no longer lie in a low-dimensional subspace. We may model all these contaminations

as sparse errors added to the instances. So we could model each instance as x = a+ e,

where a ∈ Ω and e is a sparse vector. , and occlusion, the observed instances of the

common objects may no longer lie in a low-dimensional subspace. We may model the

contamination as sparse errors added to the instances. So we could model each instance

as x = a+ e, where a ∈ Ω and e is a sparse vector.

From the given K bags of instances X =
[
X(1), . . . , X(K)

]
, our goal is to find

one (or more) instance from each bag so that all the selected instances form a low-

8



rank matrix A, subject to some sparse errors E. Or equivalently, we need to solve the

following problem:

minA,E,Z rank(A) + γ∥E∥0

s.t. Xdiag (Z) = A+ E, ∀k ∈ [K]
∨nk

i=1 z
k
i = 1,

(1)

where diag(Z) is an N × N block-diagonal matrix with K blocks
{
diag

(
Z(k)

)}
. To

distinguish with the conventional (robust) “subspace learning” problems, we could refer

to this problem as “subspace discovery”.

3 Solution via Convex Relaxation

The problem in Eq. (1) is a highly combinatorial optimization problem that involves

both continuous and integer variables. It is generally intractable when the dimensions d

and N are large. Recent theory of RPCA (Candes et al., 2011) has suggested that rank

and sparsity can be effectively minimized via their convex surrogates. So we could

replace the above objective function rank(·) with the nuclear norm ∥ · ∥∗ and ℓ0 norm

with ℓ1 norm. Thus Eq. (1) is replaced with the following program:

minA,E,Z ∥A∥∗ + λ∥E∥1

s.t. Xdiag (Z) = A+ E, ∀k ∈ [K]
∨nk

i=1 z
(k)
i = 1.

(2)

Notice that although the objective function is now convex, the constraints on all the

binary variables z(k)i make this program remain intractable.
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3.1 A Naive Iterative Solution

We can use a naive way (X. Wang et al., 2012) to tackle the problem in Eq. (2) by alter-

nating between estimating Z and minimizing the objective with respect to the low-rank

A and sparse E, in a spirit similar to the EM algorithm. With Z fixed, Eq. (2) becomes

a convex optimization problem and can be solved by the RPCA method (Candes et

al., 2011). Once the low-rank matrix A is known, one could perform ℓ1-regression to

evaluate the distance between each point and the subspace:

e
(k)
i = min

w
∥Aw − x

(k)
i ∥1. (3)

Then within each bag we reassign 1 to a number of instances with errors below certain

threshold and mark the rest as 0. One can iterate this process until convergence. As

there are many outliers, this naive iterative method is very sensitive to initialization. So

we have to run this naive method many times with random initializations and pick the

best solution. This is similar to the popular RANSAC scheme for robust model estima-

tion. Suppose there are mk positive instances within the k-th bag, then the probability

that RANSAC would succeed in selecting only the common objects is ΠK
k=1(

mk

nk
). Typi-

cally ∀k,mk/nk ≤ 1
5
, so the probability that RANSAC succeeds vanishes exponentially

as the number of objects increases. Even if the correct instances are selected, the above

ℓ1 regression does not always guarantee to work well when A contains errors. Nev-

ertheless, with careful initialization and tuning, this method can be made to work for

some relatively easy cases and datasets. It can be used as a baseline method to evaluate

improved effectiveness of any new algorithm.
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3.2 Relaxing Z

Instead of enforcing the variables Z to be binary {0, 1}, we relax it to have real value

in R. Also, the constraint
∨nk

i=1 z
(k)
i = 1 can be relaxed with its continuous version

1TZ(k) = 1, which is linear. So the optimization problem becomes

minA,E,Z ∥A∥∗ + λ∥E∥1,

s.t. Xdiag (Z) = A+ E, ∀k ∈ [K] ,1TZ(k) = 1.

(4)

Although we do not explicitly require Z to be non-negative, it turns out that the optimal

solution to the above program always ensures Z∗ ≥ 0, as the theorem below shows.

This is due to some special nice properties of the nuclear norm and ℓ1 norm. For our

problem, this is incredibly helpful since the efficiency of the proposed algorithm based

on Augmented Lagrangian Method decreases quickly as the number of constraints in-

creases. This fact saves us from imposing N extra inequality constraints on the convex

program!

Theorem 1 If none of the columns of X is zero, the optimal solution Z∗ of Eq. (4) is

always non-negative.

Proof Suppose we are given an optimal solution (A,E,Z) where Z have negative en-

tries. Let us consider the triple (Â, Ê, Ẑ) constructed in the following way:

Ẑ(k) = 1
1T |Z(k)| |Z

(k)|,

Â(k) = 1
1T |Z(k)|A

(k)diag
(
sign

(
Z(k)

))
,

Ê(k) = 1
1T |Z(k)|E

(k)diag
(
sign

(
Z(k)

)) (5)
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Since Xdiag (Z) = A+E, obviously Xdiag
(
Ẑ
)
= Â+Ê thus (Â, Ê, Ẑ) is a feasible

solution, and Ẑ is non-negative. We will show that ∥Â∥∗+λ∥Ê∥1 < ∥A∥∗+λ∥E∥1, thus

contradicts to the fact that (A,E, Z) is optimal. Note that flipping the sign of any col-

umn of the matrix will not change the singular value of a matrix thus has no effect on the

nuclear norm of it (if the svd of W = UΣV ∗, diag (±1, . . . ,±1)V is still orthogonal

matrix). So if we construct another matrix A′ such that A′(k) = A(k)diag
(
sign

(
Z(k)

))
,

thus ∥A′∥∗ = ∥A∥∗. Similarly we construct an E ′ and ∥E ′∥1 = ∥E∥1. So Â are Ê are

just column-wise down-scaled version of A′ and E ′. Since for the k-th bag 1TZ(k) = 1,

1T |Z(k)| > 1 if and only if any entry of Z(k) is negative, otherwise 1T |Z(k)| = 1. So

the columns of A′ and E ′ in the bags with negative Z(k) are down-scaled by a scalar

αk ∈ (0, 1). It can be proved that any down scaling of a non-zero column of a matrix

will decrease the nuclear norm.

Lemma 2 Given any matrix Q ∈ Rm×n, if Q̃ is Q with some column scaled by some

scalar α ∈ (0, 1), then ∥Q̃∥∗ < ∥Q∥∗.

Proof:

Without loss of generality, we assume that the last column qn get scaled. Let Q =

[Qn−1, qn] and let Q′ = [Qn−1, 0] be the matrix by setting the last column to 0. The

singular values of Q′ are just the union of singular values of Qn−1 and an additional 0.

Let t = min {m,n}. According to [(Horn & Johnson, 2012) Theorem 7.3.9], σ1(Q) ≥

σ1(Q
′) ≥ σ2(Q) ≥ σ2(Q

′) ≥ . . . ≥ σt(Q) ≥ σt(Q
′) ≥ 0. So naturally ∥Q∥∗ ≥ ∥Q′∥∗

and the equality holds only if σi(Q) = σi(Q
′),∀i ∈ [t], this is impossible since ∥Q∥2F =∑

i σi(Q)2 > ∥Q′∥2F =
∑

i σi(Q
′)2. So we must have ∥Q∥∗ > ∥Q′∥∗.
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Note that Q̃ = αQ + (1 − α)Q′ and the nuclear norm ∥ · ∥∗ is convex, applying

Jensen’s inequality we have

∥Q̃∥∗ ≤ α∥Q∥∗ + (1− α)∥Q′∥∗ < α∥Q∥∗ + (1− α)∥Q∥∗ = ∥Q∥∗ (6)

which concludes the proof.

Â can be viewed as a sequence of down-scaling on different columns of A, and each

down-scaling will decreases the nuclear norm. The same goes for the ℓ1 norm of the

sparse error E. This shows that ∥Â∥∗ + λ∥Ê∥1 < ∥A∥∗ + λ∥E∥1. This contradicts the

assumption that (A,E,Z) is optimal.

3.3 Solving Eq. (4) via Alternating Direction Method of Multipliers

We apply the Alternating Direction Method of Multipliers (ADMM) method to solve

Eq. (4). First write down the Augmented Lagrangian function:

L(A,E, Z, Y0, Y1, . . . , YK)
.
= ∥A∥∗ + λ∥E∥1

+⟨Y0, Xdiag (Z)− A− E⟩+ µ
2
∥Xdiag (Z)− A− E∥2F

+
∑K

k=1

(
⟨Yk, 1TZ(k) − 1⟩+ µ

2
∥1TZ(k) − 1∥2F

)
.

(7)

Instead of following the exact ALM procedure, we adopt the approximation scheme in

(Boyd et al., 2011; Lin et al., 2010) which basically alternates the minimization with
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respect to the three sets of variables in each iteration t:



At+1 = argmin
A

L(A,Et, Zt, Yt, µt) =

argmin
A
∥A∥∗ +

µt

2

∥∥∥Xdiag(Zt)− A− Et +
Y0,t

µt

∥∥∥2

F
,

Et+1 = argmin
E

L(At+1, E, Zt, Yt, µt) =

argmin
E
∥E∥1 +

µt

2

∥∥∥Xdiag(Zt)− At+1 − E +
Y0,t

µt

∥∥∥2

F
,

Zt+1 = argmin
Z

L(At+1, Et+1, Z, Yt, µt) =

argmin
Z

∥∥∥Xdiag(Z)− At+1 − Et+1 +
Y0,t

µt

∥∥∥2

F
+

...

K∑
k=1

∥∥∥1TZ(k) − 1 +
Yk,t

µt

∥∥∥2

F
.

(8)

Fortunately, the above three minimization problems all have closed-form solutions. De-

tails are given in as follows.

Let Sϵ(·) be the following shrinkage operator.

Sϵ(x) =


x− ε, if x > ε,

x+ ε, if x < −ε,

0, otherwise,

(9)

If the svd of Xdiag (Zt)−Et+
Y0,t

µt
= UΣV ∗, then the optimal At+1 is given as At+1 =

US 1
µ
(Σ)V ∗. For Et+1, the optimal solution is S λ

µt

(
Xdiag (Zt)− At+1 +

Y0,t

µ

)
. For

Z, we can solve the original optimization via K independent ones for Z(k). Each sub
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optimization is a typical least square problem for Z(k).

Z
(k)
t+1 = argmin

Z(k)

∥∥∥∥∥X(k)diag
(
Z(k)

)
− A

(k)
t+1 − E

(k)
t+1 +

Y
(k)
0,t

µt

∥∥∥∥∥
2

F

...+

∥∥∥∥1TZ(k) − 1 +
Yk,t

µt

∥∥∥∥2

F

(10)

To be brief, let us denote P (k) = A
(k)
t+1 + E

(k)
t+1 − µ−1

t Y
(k)
0,t ∈ Rd×nk and we mark the

ith column of P (k) as P
(k)
i and Q(k) = 1 − µ−1

t Yk,t ∈ R1. Furthermore, let’s define

X
(k)
R =


x
(k)
1

. . .

x
(k)
nk

 and P
(k)
R = vec

(
P (k)

)
. Thus Eq. (10) can be rewritten as

Z
(k)
t+1 =argmin

Z(k)

∥∥∥X(k)
R Z(k) − P

(k)
R

∥∥∥2

F
+
∥∥1TZ(k) −Q(k)

∥∥2

F

=

∥∥∥∥∥∥∥∥
X

(k)
R

1T

Z
(k)
t+1 −

P
(k)
R

Q(k)


∥∥∥∥∥∥∥∥
2

F

(11)

Directly applying the standard least square technique would require us to compute the

pseudo-inverse of X(k)
R ∈ R(dnk+1)×nk , which is high-dimensional. So we perform a

15



trick so that pseudo-inverse is only calculated for a matrix in Rnk×nk .

Z
(k)
t+1 =

[
X

(k)T
R 1

]X
(k)
R

1T




† [
X

(k)T
R 1

]P
(k)
R

Q


=((X

(k)T
R )X

(k)
R + 1 · 1T )†(X

(k)T
R P

(k)
R + 1 ·Q(k))

=


(x

(k)
1 )Tx

(k)
1 + 1 · · · 1

... . . . ...

1 · · · (x
(k)
nk )

Tx
(k)
nk + 1



†

...


(x

(k)
1 )TP1 +Q(k)

...

(x
(k)
nk )

TPnk
+Q(k)



(12)

After A,E, and Z are updated, we only need to perform a gradient ascent on the

dual variable Yt:

Y0,t+1 = Y0,t + µt (Xdiag(Zt+1)− At+1 − Et+1) ,

Yk,t+1 = Yk,t + µt

(
1TZ

(k)
t+1 − 1

)
.

And µ is also updated by µk+1 = ρµk, ρ > 1.

The complete algorithm is summarized in Algorithm 1 below.

The above alternating minimization process in Eq. (8) is known as Alternating Di-

rection Method of Multipliers (ADMM) (Gabay & Mercier, 1976). A comprehensive

survey of ADMM is given in (Boyd et al., 2011) and Lin et al. (2010) introduced it
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Algorithm 1 : ADMM for robust subspace discovery
Input: Bags X and λ.

1: Z0 = 0, Y0 = 0; ∀k ∈ [K], Y
(k)
k,0 = 0;E0 = 0;µ0 > 0; ρ > 1; t = 0

2: while not converged do
3: // Line 4-5 solve At+1 = argminA L(A,Et, Zt, Yt, µt).
4: [U,Σ, V ∗] = svd(Xdiag (Zt)− Et +

Y0,t

µt
);

5: At+1 = US 1
µ
(Σ)V ∗.

6: // Line 7 solves Et+1 = argminE L(At+1, E, Zt, Yt, µt).
7: Et+1 = S λ

µt

(
Xdiag (Zt)− At+1 +

Y0,t

µ

)
.

8: // Line 9-12 solve Zt+1 = argminZ L(At+1, Et+1, Z, Yt, µt).
9: for k = 1→ K do

10: Obtain Z
(k)
t+1 via Eq. (12).

11: end for
12: Zt+1 = [Z

(1)
t+1, . . . , Z

(K)
t+1 ].

13: // Line 14-16 update Yk+1 and µk+1.
14: Y0,t+1 = Y0,t + µt (Xdiag(Zt+1)− At+1 − Et+1).

15: Yk,t+1 = Yk,t + µt

(
1TZ

(k)
t+1 − 1

)
,∀k ∈ [K].

16: µt+1 = ρµt.
17: t← t+ 1.
18: end while

Output: the converged values for (A,E, Z).

to the field of low-rank optimization. ADMM is not always guaranteed to converge to

the optimal solution. If there are only two alternating terms, its convergence has been

well-studied and established in (Gabay & Mercier, 1976). However, less is known for

the convergence of cases where there are more than two alternating terms, despite the

strong empirical observations (Z. Zhang et al., 2012). Tao & Yuan (2011) obtained con-

vergence for a certain family of three-term alternation functions (applied to the noisy

principal component pursuit problem). However, the scheme proposed in (Tao & Yuan,

2011) is different from the direct ADMM in Eq. (8), and it is also computationally heavy

in practice. The convergence of the general ADMM remains an open problem although

in practice a simple and fast implementation resides. Nevertheless, during the submis-

sion of this manuscript, there has been some latest development in the study of ADMM
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(Shiqian Ma & Zou, 2013) that suggests one can design a convergent ADMM algorithm

for the problem studied here. For instance, we could simply group the variables E and

Z together and apply the proximal ADMM algorithm suggested in (Shiqian Ma & Zou,

2013), which results in slight modification to the proposed algorithm. Such proximal

ADMM is guaranteed to converge. However, in practice, it might not converge faster

than the proposed algorithm which exploits the natural separable structures in the aug-

mented Lagrangian function among the three sets of variables, A, E, and Z. From our

experience, the proposed algorithm works extremely well in practice and already meet

our application goals.

4 Simulations and Experiments

In this section, we conduct simulations and experiments on both synthetic and real data

for different applications for object discovery to verify the effectiveness of our method.

We name the method described in Section 3.1 as Naive Iterative Method (NIM), and

call the relaxed method as ADMM. In all our experiments, we set λ = 1/
√
d where d

is the dimension of instance feature.

4.1 Robust subspace learning simulation

In order to investigate the ability of the proposed ADMM method for recovering the

indicators of inlier instances, in this experiment, we generate synthetic data with 50

bags; in each bag there are 10 instances which include 1 positive instance and 9 neg-

ative instances; the dimension of instance is d = 500. First, the positive instances are
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generated by linearly combining r randomly generated d × 1 vector whose entries are

i.i.d. standard Gaussian, and the negative instances are independently randomly gen-

erated d × 1 vector following i.i.d. normal distribution. Then, for every instance (no

matter whether it is positive or negative), we normalize it to make sure its ℓ2-norm is 1.

At last, large sparse errors are added to all instances; the sparsity ratio of the error is s,

and the values of the error is uniformly distributed in the range of [−1, 1].

Figure 2: Accuracy of the recovered indicators when the sparsity level of error and

the rank of subspace vary for ADMM at different thresholds and NIM. (a) shows the

accuracy of ADMM at τ = 0.5. (b) shows the accuracy of ADMM at τ = 0.99. (c)

shows the accuracy of NIM.

We investigate the performance when r (the rank of subspace) and s (the sparsity

level the error) vary. r ranges from 1 to 31; s ranges from 0 to 0.3. For each test,

we denote the ground-truth indicator vector as Z∗, the recovered indicator vector as

Ẑ, the set of indexes whose corresponding values in Z∗ are 1 as I∗, and the set of

indexes whose corresponding values in Ẑ are larger than a threshold τ ∈ [0, 1] as Î .

Accuracy of the recovered indicators is defined as: accuracy = #(I∗∩Î)
#(I∗)

. Given the

ratio of sparsity and the rank of subspace, we run 5 random tests, and report the average

accuracy of the recovered indicators for ADMM (under different τ ) and NIM (randomly

initialized) in Fig. 2. In Fig. 2(a), τ = 0.5; 0.5 is a fair value, since there is only one
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recovered indicator having the value larger than 0.5. In Fig. 2(b), τ = 0.99, which is a

very strict value; the accuracy matrix of the recovered indicators under τ = 0.99 shows

how exact of our relaxation in Sec. 3.2. The solution of NIM in Fig. 2(c) is discrete,

and it is not necessary to set a threshold for the solution. Observing from the results in

Fig. 2, NIM can work only when the positive instances are in a very low rank subspace

in the situation of no error. No matter the threshold is 0.5 or 0.99, the working ranges

of ADMM are strikingly larger than NIM. Comparing the results in Fig. 2(a) and (b),

we find that it requires positive instances to be in a lower-dimensional subspace and

contain less error if we want to exactly recover the indicators of them, say the indicator

values of recovered instances are larger than 0.99.
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Figure 3: Precision-recall curves for the recovered indicator values by ADMM. (a): the

rank of subspace is fixed at r = 5; the sparsity level of error s = 0%, 5%, 10%, 15%.

(b): the sparsity level of error is fixed at s = 10%; the rank of subspace r = 1, 5, 10, 15.

Multiple positive instances in one bag: The above simulations are focused on the sit-

uation where only one positive instance exists in each bag. Now we study how ADMM

can deal with the situation where multiple instances exist in each bag. We put 3 positive
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instances in each bag, which are randomly drawn from the same subspace and corrupted

with large sparse errors. Thus, the three positive instances in each bag are not identical.

For different values of r and s, we run ADMM for 5 times. The values of the recovered

indicators are used for plotting the precision-recall curve. Results are shown in Fig. 3.

Given a threshold τ , precision and recall are calculated by: precision = #(I∗∩Î)
#(Î)

and recall = #(I∗∩Î)
#(all positive instances) . As shown in Fig. 3(a), the performance of

ADMM increases as the error becomes sparser; when there is no error, ADMM is able

to perfectly identify all positive instances. Fig. 3(b) shows that it requires the subspace

to have higher rank if more positive instances exist. When the rank of subspace is 15

and the sparsity level of error is 10%, ADMM is able to recover the indicators of 99%

positive instances with 100% precision. It is observed that the current formulation for

the subspace discovery problem in Eq. (4) has difficulty in dealing with multiple posi-

tive instances in some other settings.

4.2 Aligned face discovery among random image patches

We illustrate the effect of ADMM for object discovery by finding well aligned face im-

ages among lots of randomly selected image patches. Face images are from the Yale

face dataset (Georghiades et al., 2001) which consists of 165 frontal faces of 15 individ-

uals. Other image patches are randomly selected from the PASCAL image dataset (Ev-

eringham et al., 2011). We design bags and instances as following: the 165 face images

are in 165 bags; other than the face image, in each bag, there are 9 image patches from

PASCAL dataset; every image/patch is normalized to 64×64 pixels, and then vectorized

to be a 4096 dimensional feature. Some of images in bags are shown in Fig. 4(a).
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To evaluate the performance of this face recovery task, we get the images with

the maximum indicator value in each bag, and then calculate the percentage of Yale

faces among these images as the accuracy of face discovery. Because negative in-

stances are randomly selected, we run the experiments 5 times. The average accuracy

and the standard deviation of ADMM and NIM (randomly initialized) are 99.5±0.5%

and 77.8±3.5% respectively. Some of the discovered faces by ADMM are shown in

Fig. 4.(b). As it shows, facial expression and glasses are removed from the original im-

ages so that the repaired faces are better approximated by a low-dimensional subspace.
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Figure 4: (a): Each row shows some sampled images in one bag. (b): Face discov-

ery results by our algorithm. The first column shows the original patches in the bag;

the second and third columns show recovered low-rank and sparse components respec-

tively. (c): The distributions of singular values of our solution (in red), the low-rank

component of uncommon patches via RPCA (Candes et al., 2011) (in green), and the

original uncommon patches (in blue) in the experiment.

4.3 Object discovery on real word images

The task of object discovery is becoming a major topic in the recent years to reduce

manual labeling effort to learn object class, and is a very challenging task. In this task,

we are given a set of images, each containing one or more instances of the same object
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class. In contrast to the fully supervised scenario, the locations of objects are not given.

Different from subspace learning with simulated data, the appearance of an object varies

a lot in real world images, which requires using image descriptors that are somewhat

robust to substantial pose variations, e.g., HoG and LBP; moreover, location and scale

of the objects are unknown that means the number of instances can rise to millions;

to address this problem, we utilize an existing unsupervised salient object detection

algorithm, e.g. (Feng et al., 2011), to reduce the number of instances per bag/image.

The reason for us to choose the HoG and LBP descriptors for characterizing object is

due to the observation that objects from the same category with the same view may

not have similar color or texture. However they often have similar shapes. Both of

the features, HoG and LBP, show good performance in supervised object detection

(Felzenszwalb et al., 2010; Ahonen et al., 2006). The common shape structures of

objects are the subspaces we want to discovery.

In the experiments of object discovery on real word images, we evaluate the pro-

posed ADMM algorithm on four diverse datasets, which are PASCAL 2006 dataset

(Everingham et al., 2006), PASCAL 2007 dataset (Everingham et al., 2007), Face De-

tection Data Set and Benchmark (FDDB) subset (Jain & Learned-Miller, 2010), and

ETHZ Apple logo class (Ferrari et al., 2006), and compare ADMM with the state-of-

the-art object discovery methods. Because different performance evaluation protocols

are used, we give the experimental results for PASCAL 2006 and 2007 datasets, and for

FDDB subset and ETHZ Apple logo class in two different parts.
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PASCAL 2006 and 2007 datasets

The PASCAL 2006 and 2007 datasets are challenging and have been widely used as

benchmarks for evaluating supervised object detection and image classification sys-

tems. For the object discovery task, we follow the protocol of (Deselaers et al., 2012).

The performance is evaluated by the CorLoc measure which is the percentage of cor-

rectly localized objects, according to the PASCAL-criterion (window intersection-over-

union > 0.5). Two subsets are taken from both PASCAL 2006 and 2007 datasets,

which are called PASCAL06-6×2, PASCAL06-all, PASCAL07-6×2, and PASCAL07-

all. PASCAL06-6×2 contains 779 images from 12 classes/views; PASCAL06-all con-

tains 2, 184 images from 33 classes/views; PASCAL07-6×2 contains 463 images from

12 classes/views; and PASCAL07-all contains 2, 047 images from 45 classes/views.

For more details about the datasets, as well as the evaluation protocol, please refer to

(Deselaers et al., 2012).
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Figure 5: Red rectangles: object discovery results of ADMM on the challenging PAS-

CAL 2007. Green rectangles: annotated object ground-truth. From top to bottom:

aeroplane, bicycle, bus, motorbike, plotted-plants and tv-monitors.

As mentioned previously, each image is considered as a bag, and a patch in the

image detected by the salient object detector in (Feng et al., 2011) is considered as an

instance. The parameter of score threshold in (Feng et al., 2011) is denoted as τs, which

controls the number of salient objects detected. Standard HoG and LBP features are

then extracted for each image patch. We let τs = 0.22 for the PASCAL06-6×2 and

PASCAL06-all datasets and use τs = 0.165 for the PASCAL07-6×2 and PASCAL07-

all datasets. We run the proposed ADMM method on these images and report the image

patch with the maximum indicator value as the detected object. The results of ADMM

are reported in Table. 1 and compared with the results of other methods in (Pandey &

Lazebnik, 2011; Deselaers et al., 2012; Chum & Zisserman, 2007; Russell et al., 2006;
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Lampert et al., 2009).

Table. 1 shows favorable results by our method compared with those by (Chum

& Zisserman, 2007; Russell et al., 2006; Lampert et al., 2009). The state-of-the-art

performances are reported in (Pandey & Lazebnik, 2011) and (Deselaers et al., 2012),

which either uses extra bounding-box annotations or adopts complicated object models

(Felzenszwalb et al., 2010). Here we study a generative model of subspace learning with

a clean and effective solution. Fig. 5 shows some discovered objects on the PASCAL-all

dataset.

PASCAL06- PASCAL07-
Method 6×2 all 6×2 all

ESS (Lampert et al., 2009) 24 21 27 14
Russell et al. (2006) 28 27 22 14
Chum & Zisserman (2007) 45 34 33 19
ADMM (our method) 57 43 40 27
Deselaers et al. (2012) 64 49 50 28
Pandey & Lazebnik (2011) N/A N/A 61 30

Table 1: Object discovery performance evaluated by CorLoc on PASCAL 2006 and

2007 datasets.

FDDB subset and ETHZ Apple logo class

The FDDB subset contains 440 face images; the ETHZ Apple logo class contains 36

images with Apple logos. The appearance of objects and the background of the two

datasets are quite diverse. In these two datasets, we only use HoG as the descriptor.

Coordinating with the formulation in this paper, the low-rank term corresponds to the

common shape structures of faces/apple-logos, since we use the HoG as the descriptor;

the sparse error term corresponds to the occlusions and the appearance variations in
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Figure 6: Face discovery results on the FDDB subset (Jain & Learned-Miller, 2010).

The patches with the maximum score given by SD (Feng et al., 2011), bMCL (Zhu

et al., 2012), NIM-SD (in blue) and ADMM are plotted in cyan, green, blue and red,

respectively.

faces/apple-logos. We run ADMM and get the indicator value of each instance; for

each image, the indicator value is normalized by dividing the maximum indicator value

in the bag; the normalized indicator value is used as the score of each patch.

A selected patch is correct if it intersects with the ground truth object by more than

half of their union (PASCAL criteria). Object discovery performance is evaluated by

1) precision-recall curves (Everingham et al., 2011), generated by varying the score

threshold, 2) average precision (AP) (Everingham et al., 2011), computed by averaging

multiple precisions corresponding to different recalls at regular intervals.

Method FDDB subset ETHZ Apple logo

SD 0.148 0.532
bMCL 0.619 0.697
NIM-SD 0.671 0.826
NIM-Rand 0.669 0.726
ADMM (our method) 0.745 0.836

Table 2: Performance comparison with APs for SD (Feng et al., 2011), bMCL (Zhu et

al., 2012), NIM-SD, NIM-Rand, and ADMM on FDDB subset.
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We compare ADMM with four methods: the baseline saliency detection method

(SD) in (Feng et al., 2011), the state-of-the-art discriminative object discovery approach

named bMCL in (Zhu et al., 2012), the naive iterative method initialized with saliency

score (NIM-SD), and the naive iterative method with random initialization (NIM-Rand).

The parameters of the four methods are turned to make sure they achieve their best per-

formances. AP of NIM-Rand is the average value of 3 rounds. APs of all four methods

are compared with ADMM in Table. 2 on both datasets. As we can see, ADMM sig-

nificantly improves the results from the saliency detection and well outperforms all the

other competing methods. The precision-recall curves of the four methods in Fig. 7

confirm this as well. SD method is a purely bottom-up approach. The other three

methods make the assumption all of the input images contain a common object class

of interest. The bMCL method (Zhu et al., 2012) is a discriminative method; it ob-

tains state-of-the-art performance on image datasets with simple background, such as

the SIVAL dataset (Rahmani et al., 2005). The images in the FDDB dataset are more

cluttered, posing additional difficulty. Our methods, both ADMM and NIM-SD, are

able to deal with cluttered background since they do not seek to discriminate the object

from the background, which is an important property in tackling the problem object dis-

covery/subspace learning. The patches with maximum scores by SD, bMCL, NIM-SD

and ADMM are shown in Fig. 6.

In the experiments, we observe that there are situations in which ADMM might fail:

(1) the objects are not contained in the detected salient image windows; (2) the objects

observe large variation due to articulation or non-rigid transformation, which do not

reside in a common low-rank space. Note that in this paper, we focus on the problem of
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Figure 7: Precision-recall curves of SD (Feng et al., 2011) (in cyan), bMCL (Zhu et al.,

2012) (in green), NIM-SD (in blue) and ADMM (in red) in the task of object discovery

in FDDB subset (Jain & Learned-Miller, 2010) (a) and ETHZ Apple logo class (Ferrari

et al., 2006) (b).

subspace learning and make the assumption of the common pattern spanning a low-rank

subspace.

4.4 Instance Selection for Multiple Instance Learning

In this experiment, we show how to apply the proposed ADMM to the traditional MIL

problem (T. Dietterich et al., 1997). Our basic idea is to use ADMM to directly dis-

tinguish the positive instances from the negative instances in positive bags; the found

positive instances together with all the negative instances from negative bags are used

to train an instance-level classifier, e.g. SVM with RBF kernel, for the MIL task. In the

testing stage, we use the learned instance-level SVM classifier for bag classification,

based on a noisy-or model: if there exists any positive instance in a bag, the bag is

identified as being positive, otherwise negative.

To use ADMM to distinguish positive instances from the negative instances, we

follow the assumption that has been previously made in this paper: positive instances

29



Datasets Musk1 Musk2 Elephant Fox Tiger Average

MI-SVM 77.9 84.3 81.4 59.4 84.0 77.4
mi-SVM 87.4 83.6 82.0 58.2 78.9 78.0
MILES 86.3 87.7 - - - -
EM-DD 84.8 84.9 78.3 56.1 72.1 75.2
PPMM Kernel 95.6 81.2 82.4 60.3 80.2 79.9
MI-CRF 87.0 78.4 85.0 65.0 79.5 79.0
ADMM (our method) 89.9±0.7 85.0±1.6 79.6±0.9 65.4±1.2 81.5±1.0 80.3
MIGraph 90.0±3.8 90.0±2.7 85.1±2.8 61.2±1.7 81.9±1.5 81.6
miGraph 88.9±3.3 90.3±2.6 86.8±0.7 61.6±2.8 86.0±1.6 82.7

Table 3: Performance comparison with per-class and average bag classification accu-

racies (%) for MI-SVM and mi-SVM in (Andrews et al., 2003), MILES (Chen et al.,

2006), EM-DD (Q. Zhang & Goldman, 2001b), PPMM Kernel (H.-Y. Wang et al.,

2008), MIGraph and miGraph in (Zhou et al., 2009), MI-CRF (Deselaers & Ferrari,

2010), and our method on five MIL benchmark datasets.

lie in a low-dimensional subspace. In practice, we collect all positive bags as input of

ADMM algorithm in Algorithm 1 and obtain the indicator value of each instance. For

each bag, the indicator value is normalized by dividing the maximum indicator value

in the bag. Then, the instances whose normalized indicator values are larger than a

upper threshold τu are labeled as positive instances; the instances whose normalized

indicator values are less than a lower threshold τl are labeled as negative instances. In

this experiment, we fix τu = 0.7 and τl = 0.3. The instances with normalized indicator

values between 0.3 and 0.7 are omitted and not used for training the instance SVM

classifier. When training the RBF kernel SVM, we adopt the LibSVM (Chang & Lin,

2011).

We evaluate the proposed method on five popular benchmark datasets, including

Musk1, Musk2, Elephant, Fox, and Tiger. Detailed descriptions of the datasets can
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be found in (T. G. Dietterich & Lathrop, 1997; Andrews et al., 2003). We compare

our method with MI-SVM and mi-SVM in (Andrews et al., 2003), MILES (Chen et

al., 2006), EM-DD (Q. Zhang & Goldman, 2001b), PPMM Kernel (H.-Y. Wang et al.,

2008), MIGraph and miGraph in (Zhou et al., 2009), and MI-CRF (Deselaers & Ferrari,

2010) via ten times 10-fold cross validation and report the average accuracy and the

standard deviation in Table. 3. Some of them were obtained in different studies and

the standard deviations were not available. The average accuracy over the five tested

datasets is reported in the right most column. The best performance on each compared

item is noted in bold.

As shown in Table. 3, the best results are reported by MIGraph and miGraph, which

exploit graph structure based on the affinities. We focus on comparing with mi-SVM

which selects instance by maximizing margin between positive and negative instance

under MIL condition via iterative SVM. This problem is non-convex and the optimiza-

tion method of mi-SVM does not guarantee a local optima. Here, our method selects

instance of a common subspace with a convex formulation and obtains promising re-

sults.

5 Conclusion

In this paper, we have proposed a robust formulation for unsupervised subspace dis-

covery. We relax the highly combinatorial high-dimensional problem into a convex

program and solve it efficiently with Augmented Lagrangian Multiplier method. Un-

like the other approaches based on discriminative training, our proposed method can
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discover objects of interest by utilizing the common patterns across input data. We

demonstrate the evident advantage of our method over the competing algorithms in a

variety of benchmark datasets. Our method suggests that an explicit low-rank sub-space

assumption with a robust formulation naturally deals with a subspace discovery problem

in presence of overwhelming outliers, which allows a rich emerging family of subspace

learning methods to have a wider scope of applications; it enlarges the application range

of the RPCA-based methods.
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